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•Introduction: cosmology from LSS observations.

•Baryon acoustic oscillations (BAO).

•Galaxy redshift surveys.

•Potential systematic errors.

•Angle-averaged vs anisotropic measurements.

•Present-day BAO measurements.

Lecture 1: BAO



•Redshift-space distortions (RSD).

•The density - velocity relation.

•Impact of RSD on clustering measurements.

•Modelling of RSD beyond the linear regime.

•Current cosmological constraints from BAO & RSD.

•Forecasts for future surveys.

Lecture 2: RSD



•A wealth of high precision observations have shown us 
a more complex Universe than previously thought.

Observational cosmology

NASA/WMAP science team



•The origin of cosmic acceleration is one of the most 
important open problems in cosmology.

•A mysterious dark energy must dominate the energy 
budget of the Universe.

•The ΛCDM model: vacuum energy,                   .

•Alternatively, CA indicates a failure of GR, which 
needs to be modified.

wDE =
pDE

⇢DE

wDE = �1

Observational cosmology



•Observational effects of cosmic acceleration:

     - Expansion history of the Universe:

     - Growth of density fluctuations:

•Both effects can be probed by LSS observations

Cosmology from LSS observations
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• Statistical analyses of large-scale structure

780 Million light-years

Cosmology from LSS observations
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regime by a factor of!4. The LRG sample should therefore out-
perform these surveys by a factor of 2 in fractional errors on large
scales. Note that quasar surveys cover much more volume than
even the LRG survey, but their effective volumes are worse, even
on large scales, due to shot noise.

3. THE REDSHIFT-SPACE CORRELATION FUNCTION

3.1. Correlation Function Estimation

In this paper, we analyze the large-scale clustering using the
two-point correlation function (Peebles 1980, x 71). In recent
years, the power spectrum has become the common choice on
large scales, as the power in different Fourier modes of the linear
density field is statistically independent in standard cosmology
theories (Bardeen et al. 1986). However, this advantage breaks
down on small scales due to nonlinear structure formation, while
on large scales elaborate methods are required to recover the sta-
tistical independence in the face of survey boundary effects (for
discussion, see Tegmark et al. 1998). The power spectrum and
correlation function contain the same information in principle,
as they are Fourier transforms of one another. The property of
the independence of different Fourier modes is not lost in real
space, but rather it is encoded into the off-diagonal elements of
the covariance matrix via a linear basis transformation. One must
therefore accurately track the full covariance matrix to use the
correlation function properly, but this is feasible. An advantage
of the correlation function is that, unlike in the power spectrum,
small-scale effects such as shot noise and intrahalo astrophysics
stay on small scales, well separated from the linear regime fluc-
tuations and acoustic effects.

We compute the redshift-space correlation function using
the Landy-Szalay estimator (Landy & Szalay 1993). Random
catalogs containing at least 16 times asmany galaxies as the LRG
sample were constructed according to the radial and angular se-
lection functions described above. We assume a flat cosmology
with !m ¼ 0:3 and !" ¼ 0:7 when computing the correlation
function. We place each data point in its comoving coordinate
location based on its redshift and compute the comoving sep-
aration between two points using the vector difference. We use
bins in separations of 4 h#1 Mpc from 10 to 30 h#1 Mpc and
bins of 10 h#1 Mpc thereafter out to 180 h#1 Mpc, for a total of
20 bins.

We weight the sample using a scale-independent weighting
that depends on redshift. When computing the correlation func-
tion, each galaxy and random point is weighted by 1/½1 þ n(z)Pw&
(Feldman et al. 1994), where n(z) is the comoving number density
and Pw ¼ 40;000 h#3 Mpc3. We do not allow Pw to change with
scale so as to avoid scale-dependent changes in the effective bias
caused by differential changes in the sample redshift. Our choice
of Pw is close to optimal at k ' 0:05 h Mpc#1 and within 5% of
the optimal errors for all scales relevant to the acoustic oscillations
(kP0:15 h Mpc#1). At z < 0:36, nPw is about 4, while nPw ' 1
at z ¼ 0:47. Our results do not depend on the value of Pw; chang-
ing the value wildly alters our best-fit results by only 0.1 !.

Redshift distortions cause the redshift-space correlation func-
tion to vary according to the angle between the separation vector
and the line of sight. To ease comparison to theory, we focus
on the spherically averaged correlation function. Because of the
boundary of the survey, the number of possible tangential sep-
arations is somewhat underrepresented compared to the number
of possible line-of-sight separations, particularly at very large
scales. To correct for this, we compute the correlation functions
in four angular bins. The effects of redshift distortions are ob-
vious: large-separation correlations are smaller along the line-of-

sight direction than along the tangential direction. We sum these
four correlation functions in the proportions corresponding to
the fraction of the sphere included in the angular bin, thereby re-
covering the spherically averaged redshift-space correlation func-
tion. We have not yet explored the cosmological implications of
the anisotropy of the correlation function (Matsubara & Szalay
2003).

The resulting redshift-space correlation function is shown in
Figure 2. A more convenient view is shown in Figure 3, where
we have multiplied by the square of the separation, so as to flatten
out the result. The errors and overlaid models will be discussed
below. The bump at 100 h#1 Mpc is the acoustic peak, to be de-
scribed in x 4.1.

The clustering bias of LRGs is known to be a strong function
of luminosity (Hogg et al. 2003; Eisenstein et al. 2005; Zehavi
et al. 2005a), and while the LRG sample is nearly volume-limited
out to z ! 0:36, the flux cut does produce a varying luminosity
cut at higher redshifts. If larger scale correlations were prefer-
entially drawn from higher redshift, we would have a differential
bias (see discussion in Tegmark et al. 2004a). However, Zehavi
et al. (2005a) have studied the clustering amplitude in the two
limiting cases, namely the luminosity threshold at z < 0:36 and
that at z ¼ 0:47. The differential bias between these two samples
on large scales is modest, only 15%. We make a simple param-
eterization of the bias as a function of redshift and then compute
b2 averaged as a function of scale over the pair counts in the
random catalog. The bias varies by less than 0.5% as a function
of scale, and so we conclude that there is no effect of a possible
correlation of scale with redshift. This test also shows that the

Fig. 2.—Large-scale redshift-space correlation function of the SDSS LRG
sample. The error bars are from the diagonal elements of the mock-catalog co-
variance matrix; however, the points are correlated. Note that the vertical axis
mixes logarithmic and linear scalings. The inset shows an expanded view with a
linear vertical axis. The models are !mh

2 ¼ 0:12 (top line), 0.13 (second line),
and 0.14 (third line), all with !bh

2 ¼ 0:024 and n ¼ 0:98 and with a mild non-
linear prescription folded in. The bottom line shows a pure CDM model (!mh

2 ¼
0:105), which lacks the acoustic peak. It is interesting to note that although the
data appear higher than the models, the covariance between the points is soft as
regards overall shifts in "(s). Subtracting 0.002 from "(s) at all scales makes the
plot look cosmetically perfect but changes the best-fit #2 by only 1.3. The bump
at 100 h#1 Mpc scale, on the other hand, is statistically significant. [See the electronic
edition of the Journal for a color version of this figure.]
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Cosmology from LSS observations
• Statistical analysis of large-scale structure



Newtonian perturbations
•In static Euclidean space the evolution of a fluid follows 

the equations

•Decomposing   and p into background and perturbations, 
these equations can be combined into

⇢̇+r · (⇢v) = 0,

v̇ + (v ·r)v = �rp
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Newtonian perturbations
•Fourier transforming and defining the Jeans length as

   this equation can be written as

•For modes with wavelengths 
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Linear evolution of density fluctuations
•An expanding universe requires a full treatment within GR.

•Working in the long. gauge, focusing on scalar modes…

•Considering only dark matter and radiation…

•The energy cons. equations                       can be written asrµT⌫,µ = 0

�0m � k2vm = 3�0,

3

4
�0� � k2v� = 3�0,

v0m +Hvm = ��,

v0� +
1

4
�� = ��.

dt = a(⌧)d⌧  Conformal time:

H =
a0

a

  is a GR version of the 
Newtonian potential
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Acoustic oscillations
•Neglecting gravitational effects, we can write

•The solution corresponds to acoustic waves 

•where the sound horizon is given by

•The initial conditions (all modes are super-horizon) imply

�00� + c2sk
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3

��(⌧) = ��(0) cos (krs(⌧)) +
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Impact of baryons
•Prior to recombination, b and    are tightly coupled due to 

Thomson scattering -> photon-baryon fluid. 

•Baryons contribute to the total momentum density

    where

•Including b and   , the Euler and continuity eqs. can still be 
combined as
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Impact of baryons
•Assume a constant gravitational potential    .  

•Assume that the change in R is slow compared to the 
frequency of the oscillations

•We can then write

•where 

�

R0

R
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The cosmic microwave background
•The multiple scatterings quickly thermalise the radiation, 

leading to a perfect blackbody spectrum. 

•Cosmic expansion rescales    as       , changing T as

•At recombination, the Universe becomes cold enough to form 
neutral hydrogen.

•Photons decouple from baryons, forming the CMB we 
observe today.

E⌫d⌫ =
8h

c3
⌫3d⌫

eh⌫/kBT � 1

⌫ a�1

T / a�1



•The CMB is the best blackbody spectrum in nature.

The cosmic microwave background
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Fig. 4. CMB spectrum from FIRAS. No spectral distortions from a blackbody have been discovered to date.

to evolve until recombination which brings the low frequency spectrum back to a blackbody but now
at the electron temperature.

The best limits to date are from COBE FIRAS from intermediate to high frequencies: |µ| < 9⇥10�5

and |y| < 1.5 ⇥ 10�5 at 95% confidence (see Fig 4 and Fixsen et al. 1996). After subtracting out
galactic emission, no spectral distortions of any kind are detected and the spectrum appears to be a
perfect blackbody of T̄ = 2.725 ± 0.002K (Mather et al. 1999).

2.3 Recombination

While the recombination process

p + e
� $ H + � , (18)

is rapid compared to the expansion, the ionization fraction obeys an equilibrium distribution just
like that considered for light elements for nucleosynthesis or the CMB spectrum thermalization. As
in the former two processes, the qualitative behavior of recombination is determined by the low
baryon-photon ratio of the universe.

Taking number densities of the Maxwell-Boltzmann form of Eqn. (2), we obtain

npne

nH

⇡ e
�B/T

✓
meT

2⇡

◆3/2

e
(µp+µe�µH)/T

, (19)

where B = mp +me�mH = 13.6eV is the binding energy and we have set gp = ge = 1
2gH = 2. Given

the vanishingly small chemical potential of the photons, µp + µe = µH in equilibrium.
Next, defining the ionization fraction for a hydrogen only plasma

np = ne = xenb ,

nH = nb � np = (1� xe)nb , (20)

FIRAS



•The signature of BAO is also present in the CMB.

Image: ESA Planck team

The cosmic microwave background



✓s = rs(z⇤)/DA(z⇤)

The cosmic microwave background
•The signature of BAO is also present in the CMB.



Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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The cosmic microwave background
•The signature of BAO is also present in the CMB.



M(r) = ⇢(r)r2Initial overdensity

Baryon Acoustic Oscillations
• Consider the behaviour of single density fluctuation.
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Photons and baryons are tightly 
coupled in a spherical wave

Baryon Acoustic Oscillations
• Consider the behaviour of single density fluctuation.
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DM perturbations 
grow

Baryon Acoustic Oscillations
• Consider the behaviour of single density fluctuation.
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Rec: photons 
decouple from 

baryons

Baryon Acoustic Oscillations
• Consider the behaviour of single density fluctuation.

Fi
gu

re
: D

. E
is

en
st

ei
n 



Baryons are “dragged” by 
residual scatterings

Baryon Acoustic Oscillations
• Consider the behaviour of single density fluctuation.
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CDM and baryons follow 
different profiles

Baryon Acoustic Oscillations
• Consider the behaviour of single density fluctuation.
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Fluctuations grow by 
gravitational instabilities

Baryon Acoustic Oscillations
• Consider the behaviour of single density fluctuation.
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DM also feels the gravitational 
pull from the baryons

Baryon Acoustic Oscillations
• Consider the behaviour of single density fluctuation.

Fi
gu

re
: D

. E
is

en
st

ei
n 



Final density profile has a 
peak at r = 150 Mpc

Baryon Acoustic Oscillations

Amplitude of BAO 
feature depends on 

fb = ⌦b/⌦m

• Consider the behaviour of single density fluctuation.
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•Galaxies form in overdense 
regions.

•Several galaxies will form at 
the central peak.

•These will be surrounded by 
a spherical shell of galaxies at

•The real universe has 
multiple density peaks.

Baryon Acoustic Oscillations

Figure: D. Eisenstein 

r = rs(zd)



Baryon Acoustic Oscillations

Figure: D. Eisenstein 

r = rs(zd)

•Galaxies form in overdense 
regions.

•Several galaxies will form at 
the central peak.

•These will be surrounded by 
a spherical shell of galaxies at

•The real universe has 
multiple density peaks.



regime by a factor of!4. The LRG sample should therefore out-
perform these surveys by a factor of 2 in fractional errors on large
scales. Note that quasar surveys cover much more volume than
even the LRG survey, but their effective volumes are worse, even
on large scales, due to shot noise.

3. THE REDSHIFT-SPACE CORRELATION FUNCTION

3.1. Correlation Function Estimation

In this paper, we analyze the large-scale clustering using the
two-point correlation function (Peebles 1980, x 71). In recent
years, the power spectrum has become the common choice on
large scales, as the power in different Fourier modes of the linear
density field is statistically independent in standard cosmology
theories (Bardeen et al. 1986). However, this advantage breaks
down on small scales due to nonlinear structure formation, while
on large scales elaborate methods are required to recover the sta-
tistical independence in the face of survey boundary effects (for
discussion, see Tegmark et al. 1998). The power spectrum and
correlation function contain the same information in principle,
as they are Fourier transforms of one another. The property of
the independence of different Fourier modes is not lost in real
space, but rather it is encoded into the off-diagonal elements of
the covariance matrix via a linear basis transformation. One must
therefore accurately track the full covariance matrix to use the
correlation function properly, but this is feasible. An advantage
of the correlation function is that, unlike in the power spectrum,
small-scale effects such as shot noise and intrahalo astrophysics
stay on small scales, well separated from the linear regime fluc-
tuations and acoustic effects.

We compute the redshift-space correlation function using
the Landy-Szalay estimator (Landy & Szalay 1993). Random
catalogs containing at least 16 times asmany galaxies as the LRG
sample were constructed according to the radial and angular se-
lection functions described above. We assume a flat cosmology
with !m ¼ 0:3 and !" ¼ 0:7 when computing the correlation
function. We place each data point in its comoving coordinate
location based on its redshift and compute the comoving sep-
aration between two points using the vector difference. We use
bins in separations of 4 h#1 Mpc from 10 to 30 h#1 Mpc and
bins of 10 h#1 Mpc thereafter out to 180 h#1 Mpc, for a total of
20 bins.

We weight the sample using a scale-independent weighting
that depends on redshift. When computing the correlation func-
tion, each galaxy and random point is weighted by 1/½1 þ n(z)Pw&
(Feldman et al. 1994), where n(z) is the comoving number density
and Pw ¼ 40;000 h#3 Mpc3. We do not allow Pw to change with
scale so as to avoid scale-dependent changes in the effective bias
caused by differential changes in the sample redshift. Our choice
of Pw is close to optimal at k ' 0:05 h Mpc#1 and within 5% of
the optimal errors for all scales relevant to the acoustic oscillations
(kP0:15 h Mpc#1). At z < 0:36, nPw is about 4, while nPw ' 1
at z ¼ 0:47. Our results do not depend on the value of Pw; chang-
ing the value wildly alters our best-fit results by only 0.1 !.

Redshift distortions cause the redshift-space correlation func-
tion to vary according to the angle between the separation vector
and the line of sight. To ease comparison to theory, we focus
on the spherically averaged correlation function. Because of the
boundary of the survey, the number of possible tangential sep-
arations is somewhat underrepresented compared to the number
of possible line-of-sight separations, particularly at very large
scales. To correct for this, we compute the correlation functions
in four angular bins. The effects of redshift distortions are ob-
vious: large-separation correlations are smaller along the line-of-

sight direction than along the tangential direction. We sum these
four correlation functions in the proportions corresponding to
the fraction of the sphere included in the angular bin, thereby re-
covering the spherically averaged redshift-space correlation func-
tion. We have not yet explored the cosmological implications of
the anisotropy of the correlation function (Matsubara & Szalay
2003).

The resulting redshift-space correlation function is shown in
Figure 2. A more convenient view is shown in Figure 3, where
we have multiplied by the square of the separation, so as to flatten
out the result. The errors and overlaid models will be discussed
below. The bump at 100 h#1 Mpc is the acoustic peak, to be de-
scribed in x 4.1.

The clustering bias of LRGs is known to be a strong function
of luminosity (Hogg et al. 2003; Eisenstein et al. 2005; Zehavi
et al. 2005a), and while the LRG sample is nearly volume-limited
out to z ! 0:36, the flux cut does produce a varying luminosity
cut at higher redshifts. If larger scale correlations were prefer-
entially drawn from higher redshift, we would have a differential
bias (see discussion in Tegmark et al. 2004a). However, Zehavi
et al. (2005a) have studied the clustering amplitude in the two
limiting cases, namely the luminosity threshold at z < 0:36 and
that at z ¼ 0:47. The differential bias between these two samples
on large scales is modest, only 15%. We make a simple param-
eterization of the bias as a function of redshift and then compute
b2 averaged as a function of scale over the pair counts in the
random catalog. The bias varies by less than 0.5% as a function
of scale, and so we conclude that there is no effect of a possible
correlation of scale with redshift. This test also shows that the

Fig. 2.—Large-scale redshift-space correlation function of the SDSS LRG
sample. The error bars are from the diagonal elements of the mock-catalog co-
variance matrix; however, the points are correlated. Note that the vertical axis
mixes logarithmic and linear scalings. The inset shows an expanded view with a
linear vertical axis. The models are !mh

2 ¼ 0:12 (top line), 0.13 (second line),
and 0.14 (third line), all with !bh

2 ¼ 0:024 and n ¼ 0:98 and with a mild non-
linear prescription folded in. The bottom line shows a pure CDM model (!mh

2 ¼
0:105), which lacks the acoustic peak. It is interesting to note that although the
data appear higher than the models, the covariance between the points is soft as
regards overall shifts in "(s). Subtracting 0.002 from "(s) at all scales makes the
plot look cosmetically perfect but changes the best-fit #2 by only 1.3. The bump
at 100 h#1 Mpc scale, on the other hand, is statistically significant. [See the electronic
edition of the Journal for a color version of this figure.]
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Baryon Acoustic Oscillations
•First detection of the 

BAO peak (SDSS-LRG).

•Confirmed by other 
techniques and samples.

•Confirms a prediction of 
the standard model.

•BAOs are related to the 
sound

rd = rs(zdrag)



•BAO can be used as a standard ruler.

•Angle-averaged measurements can only measure

Galaxy samples CMB
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Baryon Acoustic Oscillations
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• BAO measurements require large volumes!

Galaxy redshift surveys

CfA survey (1989)

BAO scale!



CfA survey (1989)

2dFGRS (2003)
SDSS - LRGs (2009)

Galaxy redshift surveys
• BAO measurements require large volume



•Designed to tackle CA through 
BAO measurements 

•Total area of 10,200 deg2.

•Positions for                 LGs 

    - LOWZ, with 0.1 < z < 0.43 

    - CMASS, with 0.43 < z < 0.7 

•A sample of                  QSO,                  
2.3 < z < 2.8

BOSS in a nutshell

1.2⇥ 106

1.6⇥ 105

Reid et al. (2015)



BOSS (2016)

CfA survey (1989)

BOSS in a nutshell





•CMASS-DR12 monopole 
correlation function.

•Great improvement in 
statistical uncertainties. 

•High-significance detection 
of BAO signal.

•Leads to accurate distance 
measurements.

BOSS in a nutshell
Sánchez et al. (2017)



•Clustering measurements require a 
fiducial cosmology.

•Different choices lead to a rescaling

•Angle-averaged measurements are 
only sensitive to the change in

•Pair separations are then rescaled as  

BAO measurements
s?

sk
s

z ! r(z)

s?

sk
s

z ! r(z)

s?

sk
s

z ! r(z)

s?

sk
s

z ! r(z)
s
0
? =

D
0
M(zm)

DM(zm)
s?,

s
0
k =

H(zm)

H 0(zm)
sk,

s
0
? =

D
0
M(zm)

DM(zm)
s?,

s
0
k =

H(zm)

H 0(zm)
sk,

d3s0 =

✓
D0

V(zm)

DV(zm)

◆3

d3s,

d3s0 =

✓
D0

V(zm)

DV(zm)

◆3

d3s,d3s0 =

✓
D0

V(zm)

DV(zm)

◆3

d3s,

s0 = (D0
V(z)/DV(z)) s

DV(z) =
�
DM(z)2cz/H(z)

� 1
3



Sá
nc

he
z 

et
 a

l. 
(2

01
2)

•Results depend on the 
fiducial cosmology.

BAO measurements
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BAO measurements
•Results depend on the 

fiducial cosmology.

•This effect can be removed 
using the variable   :y ⌘ r/Dfid

V (zm)

y ⌘ r/Dfid
V (zm)
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BAO measurements
•Results depend on the 

fiducial cosmology.

•This effect can be removed 
using the variable   :

•Associating the position of 
the peak with     , we measure
yd(zm) =

rd
DV(zm)

y ⌘ r/Dfid
V (zm)

yd ⌘ rd/D
fid
V (zm)

↵ =
DV(z)rfidd
Dfid

V (z)rd

y ⌘ r/Dfid
V (zm)



NASA/WMAP science team

• Great opportunity for accurate cosmological constraints.

BAO measurements



• Systematic errors can dominate final error budget.

• Key issue: how does the BAO signal evolves with time?

• In practice, BAOs are not precisely a standard ruler (Crocce 
& Scoccimarro 2008, Sánchez et al. 2008).

• Our models must take into account 

    - Non-linear evolution (          )

    - Redshift-space distortions (                                )

    - Galaxy bias (light ≠ matter,                                      )

zobs = zcos + uk/c

� & 1

�g = b1� +
b2
2
�2 + �2 G2 + ��

3 �3G + . . .�g = b1� +
b2
2
�2 + �2 G2 + ��

3 �3G + . . .

Potential systematic effects
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• The non-linear power 
spectrum can be written as

• Mode-coupling terms affect 
different scales.

• For the correlation function

• NL evolution damps the BAO 
signal

Wednesday, September 17, 2014
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P (k) = PL(k)G(k)2 + PMC(k)

⇠(s) = ⇠L(s)⌦G(s)2 + ⇠MC(s)

Potential systematic effects



Sánchez et al. (2008)

Potential systematic effects
• The non-linear power 

spectrum can be written as

• Mode-coupling terms affect 
different scales.

• For the correlation function

• NL evolution damps the BAO 
signal

P (k) = PL(k)G(k)2 + PMC(k)

⇠(s) = ⇠L(s)⌦G(s)2 + ⇠MC(s)



Sánchez et al. (2008)

• RSD’s main effect is to boost 
clustering amplitude.

• RSD lead to an extra    
damping of the BAO peak. 

• Further degrade the BAO 
signal. 

•

Potential systematic effects
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Potential systematic effects
• RSD’s main effect is to boost 

clustering amplitude.

• RSD lead to an extra    
damping of the BAO peak. 

• Further degrade the BAO 
signal. 
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Sánchez et al. (2008)

• Our observations probe the 
galaxy density field.

• On large scales, a linear 
relation is expected:

• The effects of NL and RSD 
depend on the halo sample.

Potential systematic effects

�g(r) = b�(r)

⇠g(r) = b2⇠(r)



• The damping of the BAO limits the attainable accuracy.

• Reconstruction attempts to “un-do” these distortions.

• Construct a displacement field     as

• Significantly improve BAO distance measurements.

• Requires the knowledge of b and f(z).

r · +
f(z)

b
r · ( s ŝ) = ��g

b

r · +
f(z)

b
r · ( s ŝ) = ��g

b

Reconstruction techniques



Figure 13 A pedagogical illustration of how reconstruction can improve the measurement of the
acoustic scale; this figure is from Padmanabhan et al. (2012). Each panel shows a thin slice of a
cosmological density field. (Top Left) At early times, the density is nearly constant. We mark a
set of points at the origin in blue and a ring of points at 150 Mpc in heavy black. We measure the
distances between the black points and the centroid of the blue point; the rms of these distances
is represented by the Gaussian in the inset. (Top Right) At later times, structure has formed (in
this calculation, simply by the Zel’dovich approximation), and the points have moved. The red
circle shows the initial radius of the ring, centered on the current centroid of the blue points. The
fact that the black points no longer fall on the red ring indicates that the acoustic peak has been
broadened. The inset shows that the new rms of the radial distance (solid line) is larger than the
original (dashed line). (Bottom Left) Arrows show the Zel’dovich displacements responsible for the
structure that has formed. The idea of reconstruction is to estimate these displacements and move
the particles back. (Bottom Right) We illustrate this by smoothing the density field by a 10h−1

Mpc filter and moving the particles back. Because the displacement field is imperfectly estimated,
small-scale structure remains. But the black points now fall closer to the red ring, so that the
rms of the radial distance is close to the initial (inset). The actual reconstruction algorithm of
Padmanabhan et al. (2012) is more complex, but this example shows the basic opportunity.

provide in its millions of galaxies extensive opportunities to constrain even very general bias models
accurately enough to predict the acoustic scale shift to within 10-20% of its value, sufficient to bring
the systematic error below the statistical error.

4.3.3. Reconstruction

By broadening and shifting the BAO feature in ξ(r), non-linear gravitational evolution de-
grades BAO precision and introduces a possible systematic. Is it possible to remove these effects
by “running gravity backwards” to reconstruct the linear density field? The Zel’dovich (1970) ap-
proximation — in which particles follow straight line trajectories in comoving coordinates at the
rate predicted by linear perturbation theory — captures important aspects of non-linear evolution

55
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• Impact of reconstruction on mock data
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Figure 4. Scatter plots of �↵ pre- and post-reconstruction: mocks (circles)
+ data (star) for ⇠ and P (k) CMASS DR10 and DR11. For the DR11 data,
reconstruction improves the precision in each of the 600 mock realisations,
for both ⇠(s) and P (k).

Unlike for the power spectrum, we do not allow the damping
parameter to vary and instead fix it at the average best-fit value re-
covered from the mocks: the interplay between B⇠ and the additive
polynomial A⇠ in our fit to ⇠(s) means that the amplitude of the
BAO peak has more freedom already.

Apart from the differences in damping correction, the parallel
between ⇠(s) and P (k) fitting methods is clear and follows from
the match between Eq. (23) & (26) and between Eq. (24) and the
combination of Eqns. (27) & (28). There are three subtle differ-
ences: For the power spectrum we only shift the BAO with the
parameter ↵, while for ⇠(s) we shift the full model. As the nui-
sance parameters are marginalising over the broadband, this should
have no effect. For the correlation function, the nuisance parame-
ters are added to the final model compared to the data ⇠fit(s); for
the power spectrum, they are added to the smooth model P sm(k).
This slightly changes the meaning of the BAO damping term. We
also split the CAMB power spectrum into BAO and smooth com-
ponents in different ways, utilising the Eisenstein & Hu (1998)
functions for the ⇠(s) template, whereas for the P (k) fit we can
applying the same fitting method to the CAMB power spectrum as
used to fit the data. The effect of this is expected to be small.

For fits to both the correlation function and power spectrum,
we obtain the best-fit value of ↵ assuming that ⇠(s) and logP (k)
were drawn from multi-variate Gaussian distributions, calculating
�2 at intervals of �↵ = 0.001 in the range 0.8 < ↵ < 1.2. Our
final error on ↵ is determined by marginalising over the likelihood
surface and then correcting for the error in the covariance matrix as
described in Percival et al. (2014).

4.2 Testing on Mock Galaxy Catalogs

We test our ⇠(s) and P (k) isotropic BAO fitting procedure on
each of our CMASS mock galaxy samples, both pre- and post-

Table 4. The statistics of isotropic BAO scale measurements recovered from
the mock galaxy samples. The parameter h↵i is the mean ↵ value deter-
mined from 600 mock realisations of each sample, S↵ =

p
h(↵� h↵i)2i

is the standard deviation of the ↵ values, h�i is the mean 1 � uncertainty on
↵ recovered from the likelihood distribution of each realisation. The “com-
bined” results are post-reconstruction measurements optimally combined
across a set of bin centre choices based on the correlation matrix determined
from the mock realisations, as described in the text.

Estimator h↵i S↵ h�i h�2i/dof

DR11
Consensus P (k)+⇠(s) 1.0000 0.0090 0.0088
combined P (k) 1.0001 0.0092 0.0089
combined ⇠(s) 0.9999 0.0091 0.0090
post-recon P (k) 1.0001 0.0093 0.0090 28.6/27
post-recon ⇠0(s) 0.9997 0.0095 0.0097 17.6/17
pre-recon P (k) 1.0037 0.0163 0.0151 27.7/27
pre-recon ⇠0(s) 1.0041 0.0157 0.0159 15.7/17

DR10
post-recon P (k) 1.0006 0.0117 0.0116 28.4/27
post-recon ⇠0(s) 1.0014 0.0122 0.0126 17.2/17
pre-recon P (k) 1.0026 0.0187 0.0184 27.7/27
pre-recon ⇠0(s) 1.0038 0.0188 0.0194 15.8/17

reconstruction. The results are summarised in Table 4. Tojeiro et
al. (2014) presents similar tests on the LOWZ mock galaxy sam-
ples.

Overall, we find a small, positive bias in the mean recov-
ered h↵i values pre-reconstruction, varying between 0.0026 (DR10
P (k)) and 0.0041 (DR11 ⇠(s)). This bias is significantly reduced
post-reconstruction, as expected (Eisenstein et al. 2007b; Padman-
abhan & White 2009; Noh, White & Padmanabhan 2009; Mehta
et al. 2011). For the post-reconstruction DR11 samples, given that
the uncertainty on one realisation is 0.009, the statistical (1�) un-
certainty on h↵i is 0.0004. The P (k) and ⇠(s) h↵i results are both
consistent with 1 (i.e. unbiased). This result is independent of bin
size.

In general, the mean 1� uncertainties recovered from the in-
dividual likelihood surfaces are close to the standard deviation in
the recovered ↵. All of these values include the appropriate fac-
tors to correct for the biases imparted by using a finite number of
mocks, determined using the methods described in Percival et al.
(2014). The agreement between the recovered uncertainty and the
standard deviation suggests that our recovered uncertainties are a
fair estimation of the true uncertainty.

Applying reconstruction to the mock galaxy samples improves
the uncertainty in BAO fits substantially. Fig. 4 displays scatter
plots of �↵ before and after reconstruction for the DR11 (top)
and DR10 (bottom) samples for ⇠(s) (left) and P (k) (right). For
DR11 reconstruction reduces the uncertainty in every case. The
mean improvement, determined by comparing h�i pre- and post-
reconstruction, is more than a factor of 1.5 in every case and is
even more for the DR11 P (k) results.

In summary, DR11 CMASS post-reconstruction ⇠(s) and
P (k) measurements are expected to yield estimates of the BAO
scale, with statistical uncertainties that are less than 1 per cent, ob-
tained from likelihood errors that agree with the standard deviation
found in the measurements obtained from the mock samples. Fur-
thermore, post-reconstruction, the systematic errors on the value
of ↵ measured from the mocks are consistent with zero for both

c� 2014 RAS, MNRAS 000, 2–39

Reconstruction techniques



• CMASS DR11: a 1% distance measurement to z = 0.57
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Reconstruction techniques

DV(0.32) = (1264± 25)

✓
rd
rfidd

◆
Mpc

• LOWZ DR11: a 2% distance measurement to z = 0.32



BAO-only analyses
• Consistent with Planck constraints (assuming ΛCDM).
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Figure 21. The distance-redshift relation from the BAO method on galaxy
surveys. This plot shows DV (z)(rs,fid/rd) versus z from the DR11
CMASS and LOWZ consensus values from this paper, along with those
from the acoustic peak detection from the 6dFGS (Beutler et al. 2011) and
WiggleZ survey (Blake et al. 2011; Kazin et al. 2014). The grey region
shows the 1� prediction for DV (z) from the Planck 2013 results, assum-
ing flat ⇤CDM and using the Planck data without lensing combined with
smaller-scale CMB observations and WMAP polarization (Planck Collab-
oration 2013b). One can see the superb agreement in these cosmological
measurements.

9.2 Comparison of BAO and CMB Distance Scales in ⇤CDM

Results from the BAO method have improved substantially in the
last decade and we have now achieved measurements at a wide
range of redshifts. In Fig. 21 we plot the distance-redshift rela-
tion obtained from isotropic acoustic scale fits in the latest galaxy
surveys. In addition to the values from this paper, we include the
acoustic scale measurement from the 6dFGS (Beutler et al. 2011)
and WiggleZ survey (Blake et al. 2011; Kazin et al. 2014). As the
BAO method actually measures DV /rd, we plot this quantity mul-
tiplied by rd,fid. The very narrow grey band here is the predic-
tion from the Planck CMB dataset detailed in Sec. 9.1. In vanilla
flat ⇤CDM, the CMB acoustic peaks imply precise measurements
of ⌦mh2 and ⌦bh

2, which in turn imply the acoustic scale. The
angular acoustic scale in the CMB then determines the distance
to z = 1089, which breaks the degeneracy between ⌦m and h
once the low-redshift expansion history is otherwise specified (e.g.,
given ⌦K , w, and wa). The comparison between low-redshift BAO
measurements and the predictions from the CMB assuming a flat
⇤CDM cosmology therefore allows percent-level checks on the ex-
pansion history in this model over a large lever arm in redshift. One
sees remarkably good agreement between the BAO measurements
and the flat ⇤CDM predictions from CMB observations.

Fig. 22 divides by the best-fit prediction from Planck Collabo-
ration (2013b) to allow one to focus on a percent-level comparison.
In addition to the BAO data from the previous figure, we also plot
older BAO measurements based primarily on SDSS-II LRG data
(Percival et al. 2010; Padmanabhan et al. 2012). This figure also
shows the flat ⇤CDM prediction from the WMAP+SPT/ACT data
set. The predictions from these two data sets are in mild conflict
due to the ⇠ 5 per cent difference in their ⌦mh2 values, discussed
in Section 9.1. One can see that the isotropic BAO data, and the
BOSS measurements in particular, fall between the two predictions
and are consistent with both. Note that the recent revision of Planck
data by Spergel et al. (2013) results in a value of ⌦mh2 that is in
excellent agreement with our isotropic BAO measurements, which

Figure 22. The DV (z)/rd measured from galaxy surveys, divided by
the best-fit flat ⇤CDM prediction from the Planck data. All error bars
are 1�. The Planck prediction is a horizontal line at unity, by construc-
tion. The dashed line shows the best-fit flat ⇤CDM prediction from the
WMAP+SPT/ACT results, including their smaller-scale CMB compilation
(Bennett et al. 2013). In both cases, the grey region shows the 1 � varia-
tion in the predictions for DV (z) (at a particular redshift, as opposed to
the whole redshift range), which are dominated by uncertainties in ⌦mh

2.
As the value of ⌦mh

2 varies, the prediction will move coherently up or
down, with amplitude indicated by the grey region. One can see the mild
tension between the two sets of CMB results, as discussed in Planck Col-
laboration (2013b). The current galaxy BAO data fall in between the two
predictions and are clearly consistent with both. As we describe in Sec. 7.5,
the anisotropic CMASS fit would yield a prediction for this plot that is 0.5
per cent higher than the isotropic CMASS fit; this value would fall some-
what closer to the Planck prediction. In addition to the BOSS data points,
we plot SDSS-II results as open circles, that from Percival et al. (2010) at
z = 0.275 and from Padmanabhan et al. (2012) at z = 0.35. These data
sets have a high level of overlap with BOSS LOWZ and with each other,
so one should not include more than one in statistical fitting. However, the
results are highly consistent despite variations in the exact data sets and dif-
ferences in methodology. We also plot results from WiggleZ from Kazin
et al. (2014) as open squares; however, we note that the distance measure-
ments from these three redshift bins are substantially correlated.

brings Planck predictions of the distance scale at z = 0.32 and
z = 0.57 much closer to BOSS measurements.

Our 68 and 95 per cent constraints in the DA(0.57)(r
fid
d /rd)�

H(0.57)(rd/r
fid
d ) plane from CMASS consensus anisotropic mea-

surements are highlighted in orange in Fig. 23. In grey we overplot
one-dimensional 1- and 2� contours of our consensus isotropic
BAO fit. Also shown in Fig. 23 are the flat ⇤CDM predictions from
the Planck and WMAP CMB data sets detailed in Section 9.1. The
CMB constraints occupy a narrow ellipse defined by the extremely
precise measurement of the angular acoustic scale of 0.06 per cent
(Planck Collaboration 2013b). The extent of the ellipse arises pri-
marily from the remaining uncertainty on the physical cold dark
matter density, ⌦ch

2; Planck narrows the allowed range by nearly
a factor of two compared with WMAP. The CMASS isotropic BAO
constraints are consistent with both CMB predictions shown here.
The anisotropic constraints in particular prefer larger values of
⌦ch

2 (right edge of the WMAP contour) also favored by Planck.
Also evident in this plot is the offset between the best fit anisotropic
constraint on H(0.57)(rd/r

fid
d ) (or ✏) and the flat ⇤CDM predic-

tions from the CMB.
To make the flat ⇤CDM comparison between the CMB

and our BAO measurements more quantitative, we report in Ta-
ble 13 the Planck, WMAP, and eWMAP ⇤CDM predictions for
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Figure 21. The distance-redshift relation from the BAO method on galaxy
surveys. This plot shows DV (z)(rs,fid/rd) versus z from the DR11
CMASS and LOWZ consensus values from this paper, along with those
from the acoustic peak detection from the 6dFGS (Beutler et al. 2011) and
WiggleZ survey (Blake et al. 2011; Kazin et al. 2014). The grey region
shows the 1� prediction for DV (z) from the Planck 2013 results, assum-
ing flat ⇤CDM and using the Planck data without lensing combined with
smaller-scale CMB observations and WMAP polarization (Planck Collab-
oration 2013b). One can see the superb agreement in these cosmological
measurements.

9.2 Comparison of BAO and CMB Distance Scales in ⇤CDM

Results from the BAO method have improved substantially in the
last decade and we have now achieved measurements at a wide
range of redshifts. In Fig. 21 we plot the distance-redshift rela-
tion obtained from isotropic acoustic scale fits in the latest galaxy
surveys. In addition to the values from this paper, we include the
acoustic scale measurement from the 6dFGS (Beutler et al. 2011)
and WiggleZ survey (Blake et al. 2011; Kazin et al. 2014). As the
BAO method actually measures DV /rd, we plot this quantity mul-
tiplied by rd,fid. The very narrow grey band here is the predic-
tion from the Planck CMB dataset detailed in Sec. 9.1. In vanilla
flat ⇤CDM, the CMB acoustic peaks imply precise measurements
of ⌦mh2 and ⌦bh

2, which in turn imply the acoustic scale. The
angular acoustic scale in the CMB then determines the distance
to z = 1089, which breaks the degeneracy between ⌦m and h
once the low-redshift expansion history is otherwise specified (e.g.,
given ⌦K , w, and wa). The comparison between low-redshift BAO
measurements and the predictions from the CMB assuming a flat
⇤CDM cosmology therefore allows percent-level checks on the ex-
pansion history in this model over a large lever arm in redshift. One
sees remarkably good agreement between the BAO measurements
and the flat ⇤CDM predictions from CMB observations.

Fig. 22 divides by the best-fit prediction from Planck Collabo-
ration (2013b) to allow one to focus on a percent-level comparison.
In addition to the BAO data from the previous figure, we also plot
older BAO measurements based primarily on SDSS-II LRG data
(Percival et al. 2010; Padmanabhan et al. 2012). This figure also
shows the flat ⇤CDM prediction from the WMAP+SPT/ACT data
set. The predictions from these two data sets are in mild conflict
due to the ⇠ 5 per cent difference in their ⌦mh2 values, discussed
in Section 9.1. One can see that the isotropic BAO data, and the
BOSS measurements in particular, fall between the two predictions
and are consistent with both. Note that the recent revision of Planck
data by Spergel et al. (2013) results in a value of ⌦mh2 that is in
excellent agreement with our isotropic BAO measurements, which

Figure 22. The DV (z)/rd measured from galaxy surveys, divided by
the best-fit flat ⇤CDM prediction from the Planck data. All error bars
are 1�. The Planck prediction is a horizontal line at unity, by construc-
tion. The dashed line shows the best-fit flat ⇤CDM prediction from the
WMAP+SPT/ACT results, including their smaller-scale CMB compilation
(Bennett et al. 2013). In both cases, the grey region shows the 1 � varia-
tion in the predictions for DV (z) (at a particular redshift, as opposed to
the whole redshift range), which are dominated by uncertainties in ⌦mh

2.
As the value of ⌦mh

2 varies, the prediction will move coherently up or
down, with amplitude indicated by the grey region. One can see the mild
tension between the two sets of CMB results, as discussed in Planck Col-
laboration (2013b). The current galaxy BAO data fall in between the two
predictions and are clearly consistent with both. As we describe in Sec. 7.5,
the anisotropic CMASS fit would yield a prediction for this plot that is 0.5
per cent higher than the isotropic CMASS fit; this value would fall some-
what closer to the Planck prediction. In addition to the BOSS data points,
we plot SDSS-II results as open circles, that from Percival et al. (2010) at
z = 0.275 and from Padmanabhan et al. (2012) at z = 0.35. These data
sets have a high level of overlap with BOSS LOWZ and with each other,
so one should not include more than one in statistical fitting. However, the
results are highly consistent despite variations in the exact data sets and dif-
ferences in methodology. We also plot results from WiggleZ from Kazin
et al. (2014) as open squares; however, we note that the distance measure-
ments from these three redshift bins are substantially correlated.

brings Planck predictions of the distance scale at z = 0.32 and
z = 0.57 much closer to BOSS measurements.

Our 68 and 95 per cent constraints in the DA(0.57)(r
fid
d /rd)�

H(0.57)(rd/r
fid
d ) plane from CMASS consensus anisotropic mea-

surements are highlighted in orange in Fig. 23. In grey we overplot
one-dimensional 1- and 2� contours of our consensus isotropic
BAO fit. Also shown in Fig. 23 are the flat ⇤CDM predictions from
the Planck and WMAP CMB data sets detailed in Section 9.1. The
CMB constraints occupy a narrow ellipse defined by the extremely
precise measurement of the angular acoustic scale of 0.06 per cent
(Planck Collaboration 2013b). The extent of the ellipse arises pri-
marily from the remaining uncertainty on the physical cold dark
matter density, ⌦ch

2; Planck narrows the allowed range by nearly
a factor of two compared with WMAP. The CMASS isotropic BAO
constraints are consistent with both CMB predictions shown here.
The anisotropic constraints in particular prefer larger values of
⌦ch

2 (right edge of the WMAP contour) also favored by Planck.
Also evident in this plot is the offset between the best fit anisotropic
constraint on H(0.57)(rd/r

fid
d ) (or ✏) and the flat ⇤CDM predic-

tions from the CMB.
To make the flat ⇤CDM comparison between the CMB

and our BAO measurements more quantitative, we report in Ta-
ble 13 the Planck, WMAP, and eWMAP ⇤CDM predictions for
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Figure 5. The measured pre-reconstruction correlation function (left) and power-spectrum (right) in the directions perpendicular and parallel to the line of
sight. Shown for the NGC only. The anisotropy of the contours seen in both plots show a combination of RSD and AP effect, and hold most of the information
used to constrain DM(z)/rbd, H(z) ⇥ rd and f�8. The BAO ring can be seen in two dimensions on the correlation function plot. In an attempt to show
more clearly the anisotropic BAO ring in the power spectrum, we show in the right panel the two-dimensional power-spectrum divided by the best-fit smooth
component. The wiggles seen in this panel are analogous to the oscillations seen in the left-hand side panel of Fig 3

Table 3. Summary table of pre-reconstruction full-shape constraints on the parameter combinations DM

�
rd,fid/rd

�
, H

�
rd/rd,fid

�
and f�8(z) derived in

our companion papers for each of our three overlapping redshift bins

Measurement redshift Satpathy et al. Beutler et al (b) Grieb et al Sánchez et al
⇠(s) multipoles P (k) multipoles P (k) wedges ⇠(s) wedges

DM

�
rd,fid/rd

�
[Mpc] z = 0.38 1476 ± 33 1549 ± 41 1525 ± 25 1501 ± 27

DM

�
rd,fid/rd

�
[Mpc] z = 0.51 1985 ± 41 2015 ± 53 1990 ± 32 2010 ± 30

DM

�
rd,fid/rd

�
[Mpc] z = 0.61 2287 ± 54 2270 ± 57 2281 ± 43 2286 ± 37

H
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.38 79.3 ± 3.3 82.5 ± 3.2 81.2 ± 2.3 82.5 ± 2.4

H
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.51 88.3 ± 4.1 88.4 ± 4.1 87.0 ± 2.4 90.2 ± 2.5

H
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.61 99.5 ± 4.4 97.0 ± 4.0 94.9 ± 2.5 97.3 ± 2.7

f�8 z = 0.38 0.430 ± 0.054 0.479 ± 0.054 0.498 ± 0.045 0.468 ± 0.053
f�8 z = 0.51 0.452 ± 0.058 0.454 ± 0.051 0.448 ± 0.038 0.470 ± 0.042
f�8 z = 0.61 0.456 ± 0.052 0.409 ± 0.044 0.409 ± 0.041 0.440 ± 0.039

the BOSS measurements for scales s between 20 and 160 h
�1Mpc

with a bin width of 5 h
�1Mpc. Sánchez et al. (2016) perform ex-

tensive tests of this model using the large-volume Minerva N-body
simulations (Grieb et al. 2015) to show that it can be used to extract
cosmological information from three clustering wedges without in-
troducing any significant systematic errors.

Beutler et al. (2016b) analyses the anisotropic power spectrum
using the estimator suggested in Bianchi et al. (2015) and Scoc-
cimarro (2015), which employs Fast Fourier Transforms to mea-
sure all relevant higher order multipoles. The analysis uses power
spectrum bins of �k = 0.01h/Mpc and makes use of scales up
to kmax = 0.15h Mpc�1 for the monopole and quadrupole and
kmax = 0.1h Mpc�1 for the hexadecapole. These measurements
are then compared to a model based on renormalized perturba-
tion theory (Taruya et al. 2010). This model has been extensively
tested with N-body simulations in configuration (e.g. de la Torre
and Guzzo 2012) and Fourier space (e.g. Beutler et al. 2012).
The covariance matrix used in this analysis has been derived from
20482 Multidark-Patchy mock catalogues and the reduces �

2 for
all redshift bins is close to 1.

2 The NGC uses only 2045 mock catalogues.

The methodology in Grieb et al. (2016) is based on the ap-
plication of the clustering wedges statistic to Fourier space. Their
analysis uses three power spectrum wedges, measured in wavenum-
ber bins of �k = 0.005 h Mpc�1, up to the mildly non-linear
regime, k < 0.2 h Mpc�1. The full shape of these measurements
is fitted with theoretical predictions based on the same underlying
model of non-linearities, bias and RSD as in Sánchez et al. (2016).
Thus, these two complementary analyses represent the first time
that the same model is applied in configuration and Fourier space
fits. The methodology has been validated using the Minerva sim-
ulations and mock catalogues and found to give unbiased cosmo-
logical constraints. Besides the covariance matrix, which is derived
from 2045 MD-Patchy mock catalogues, this analysis depends on
a framework for the wedge window function, which was developed
based on the recipe for the power spectrum multipoles of Beutler
et al. (2014a). The power spectrum wedges of the NGC and SGC
sub-samples in the low-redshift bin are modelled with two different
bias, RSD, and shot noise parameters, while the intermediate and
high redshift bins are fitted with the same nuisance parameters for
the two sub-samples.

The constraints on DM(z)/rd, H(z) ⇥ rd and f�8(z) pro-
duced by each of the four individual methods are shown in Fig. 6
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used to constrain DM(z)/rbd, H(z) ⇥ rd and f�8. The BAO ring can be seen in two dimensions on the correlation function plot. In an attempt to show
more clearly the anisotropic BAO ring in the power spectrum, we show in the right panel the two-dimensional power-spectrum divided by the best-fit smooth
component. The wiggles seen in this panel are analogous to the oscillations seen in the left-hand side panel of Fig 3

Table 3. Summary table of pre-reconstruction full-shape constraints on the parameter combinations DM

�
rd,fid/rd

�
, H

�
rd/rd,fid

�
and f�8(z) derived in

our companion papers for each of our three overlapping redshift bins

Measurement redshift Satpathy et al. Beutler et al (b) Grieb et al Sánchez et al
⇠(s) multipoles P (k) multipoles P (k) wedges ⇠(s) wedges

DM

�
rd,fid/rd

�
[Mpc] z = 0.38 1476 ± 33 1549 ± 41 1525 ± 25 1501 ± 27

DM
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rd,fid/rd

�
[Mpc] z = 0.51 1985 ± 41 2015 ± 53 1990 ± 32 2010 ± 30

DM

�
rd,fid/rd

�
[Mpc] z = 0.61 2287 ± 54 2270 ± 57 2281 ± 43 2286 ± 37

H
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.38 79.3 ± 3.3 82.5 ± 3.2 81.2 ± 2.3 82.5 ± 2.4

H
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rd/rd,fid

�
[km s�1Mpc�1] z = 0.51 88.3 ± 4.1 88.4 ± 4.1 87.0 ± 2.4 90.2 ± 2.5

H
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.61 99.5 ± 4.4 97.0 ± 4.0 94.9 ± 2.5 97.3 ± 2.7

f�8 z = 0.38 0.430 ± 0.054 0.479 ± 0.054 0.498 ± 0.045 0.468 ± 0.053
f�8 z = 0.51 0.452 ± 0.058 0.454 ± 0.051 0.448 ± 0.038 0.470 ± 0.042
f�8 z = 0.61 0.456 ± 0.052 0.409 ± 0.044 0.409 ± 0.041 0.440 ± 0.039

the BOSS measurements for scales s between 20 and 160 h
�1Mpc

with a bin width of 5 h
�1Mpc. Sánchez et al. (2016) perform ex-

tensive tests of this model using the large-volume Minerva N-body
simulations (Grieb et al. 2015) to show that it can be used to extract
cosmological information from three clustering wedges without in-
troducing any significant systematic errors.

Beutler et al. (2016b) analyses the anisotropic power spectrum
using the estimator suggested in Bianchi et al. (2015) and Scoc-
cimarro (2015), which employs Fast Fourier Transforms to mea-
sure all relevant higher order multipoles. The analysis uses power
spectrum bins of �k = 0.01h/Mpc and makes use of scales up
to kmax = 0.15h Mpc�1 for the monopole and quadrupole and
kmax = 0.1h Mpc�1 for the hexadecapole. These measurements
are then compared to a model based on renormalized perturba-
tion theory (Taruya et al. 2010). This model has been extensively
tested with N-body simulations in configuration (e.g. de la Torre
and Guzzo 2012) and Fourier space (e.g. Beutler et al. 2012).
The covariance matrix used in this analysis has been derived from
20482 Multidark-Patchy mock catalogues and the reduces �

2 for
all redshift bins is close to 1.

2 The NGC uses only 2045 mock catalogues.

The methodology in Grieb et al. (2016) is based on the ap-
plication of the clustering wedges statistic to Fourier space. Their
analysis uses three power spectrum wedges, measured in wavenum-
ber bins of �k = 0.005 h Mpc�1, up to the mildly non-linear
regime, k < 0.2 h Mpc�1. The full shape of these measurements
is fitted with theoretical predictions based on the same underlying
model of non-linearities, bias and RSD as in Sánchez et al. (2016).
Thus, these two complementary analyses represent the first time
that the same model is applied in configuration and Fourier space
fits. The methodology has been validated using the Minerva sim-
ulations and mock catalogues and found to give unbiased cosmo-
logical constraints. Besides the covariance matrix, which is derived
from 2045 MD-Patchy mock catalogues, this analysis depends on
a framework for the wedge window function, which was developed
based on the recipe for the power spectrum multipoles of Beutler
et al. (2014a). The power spectrum wedges of the NGC and SGC
sub-samples in the low-redshift bin are modelled with two different
bias, RSD, and shot noise parameters, while the intermediate and
high redshift bins are fitted with the same nuisance parameters for
the two sub-samples.

The constraints on DM(z)/rd, H(z) ⇥ rd and f�8(z) pro-
duced by each of the four individual methods are shown in Fig. 6
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sight. Shown for the NGC only. The anisotropy of the contours seen in both plots show a combination of RSD and AP effect, and hold most of the information
used to constrain DM(z)/rbd, H(z) ⇥ rd and f�8. The BAO ring can be seen in two dimensions on the correlation function plot. In an attempt to show
more clearly the anisotropic BAO ring in the power spectrum, we show in the right panel the two-dimensional power-spectrum divided by the best-fit smooth
component. The wiggles seen in this panel are analogous to the oscillations seen in the left-hand side panel of Fig 3

Table 3. Summary table of pre-reconstruction full-shape constraints on the parameter combinations DM

�
rd,fid/rd

�
, H

�
rd/rd,fid

�
and f�8(z) derived in

our companion papers for each of our three overlapping redshift bins

Measurement redshift Satpathy et al. Beutler et al (b) Grieb et al Sánchez et al
⇠(s) multipoles P (k) multipoles P (k) wedges ⇠(s) wedges

DM
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rd,fid/rd

�
[Mpc] z = 0.38 1476 ± 33 1549 ± 41 1525 ± 25 1501 ± 27

DM
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rd,fid/rd

�
[Mpc] z = 0.51 1985 ± 41 2015 ± 53 1990 ± 32 2010 ± 30

DM

�
rd,fid/rd

�
[Mpc] z = 0.61 2287 ± 54 2270 ± 57 2281 ± 43 2286 ± 37

H
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.38 79.3 ± 3.3 82.5 ± 3.2 81.2 ± 2.3 82.5 ± 2.4

H
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rd/rd,fid

�
[km s�1Mpc�1] z = 0.51 88.3 ± 4.1 88.4 ± 4.1 87.0 ± 2.4 90.2 ± 2.5

H
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.61 99.5 ± 4.4 97.0 ± 4.0 94.9 ± 2.5 97.3 ± 2.7

f�8 z = 0.38 0.430 ± 0.054 0.479 ± 0.054 0.498 ± 0.045 0.468 ± 0.053
f�8 z = 0.51 0.452 ± 0.058 0.454 ± 0.051 0.448 ± 0.038 0.470 ± 0.042
f�8 z = 0.61 0.456 ± 0.052 0.409 ± 0.044 0.409 ± 0.041 0.440 ± 0.039

the BOSS measurements for scales s between 20 and 160 h
�1Mpc

with a bin width of 5 h
�1Mpc. Sánchez et al. (2016) perform ex-

tensive tests of this model using the large-volume Minerva N-body
simulations (Grieb et al. 2015) to show that it can be used to extract
cosmological information from three clustering wedges without in-
troducing any significant systematic errors.

Beutler et al. (2016b) analyses the anisotropic power spectrum
using the estimator suggested in Bianchi et al. (2015) and Scoc-
cimarro (2015), which employs Fast Fourier Transforms to mea-
sure all relevant higher order multipoles. The analysis uses power
spectrum bins of �k = 0.01h/Mpc and makes use of scales up
to kmax = 0.15h Mpc�1 for the monopole and quadrupole and
kmax = 0.1h Mpc�1 for the hexadecapole. These measurements
are then compared to a model based on renormalized perturba-
tion theory (Taruya et al. 2010). This model has been extensively
tested with N-body simulations in configuration (e.g. de la Torre
and Guzzo 2012) and Fourier space (e.g. Beutler et al. 2012).
The covariance matrix used in this analysis has been derived from
20482 Multidark-Patchy mock catalogues and the reduces �

2 for
all redshift bins is close to 1.

2 The NGC uses only 2045 mock catalogues.

The methodology in Grieb et al. (2016) is based on the ap-
plication of the clustering wedges statistic to Fourier space. Their
analysis uses three power spectrum wedges, measured in wavenum-
ber bins of �k = 0.005 h Mpc�1, up to the mildly non-linear
regime, k < 0.2 h Mpc�1. The full shape of these measurements
is fitted with theoretical predictions based on the same underlying
model of non-linearities, bias and RSD as in Sánchez et al. (2016).
Thus, these two complementary analyses represent the first time
that the same model is applied in configuration and Fourier space
fits. The methodology has been validated using the Minerva sim-
ulations and mock catalogues and found to give unbiased cosmo-
logical constraints. Besides the covariance matrix, which is derived
from 2045 MD-Patchy mock catalogues, this analysis depends on
a framework for the wedge window function, which was developed
based on the recipe for the power spectrum multipoles of Beutler
et al. (2014a). The power spectrum wedges of the NGC and SGC
sub-samples in the low-redshift bin are modelled with two different
bias, RSD, and shot noise parameters, while the intermediate and
high redshift bins are fitted with the same nuisance parameters for
the two sub-samples.

The constraints on DM(z)/rd, H(z) ⇥ rd and f�8(z) pro-
duced by each of the four individual methods are shown in Fig. 6
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Table 3. Summary table of pre-reconstruction full-shape constraints on the parameter combinations DM
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rd/rd,fid

�
and f�8(z) derived in

our companion papers for each of our three overlapping redshift bins
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the BOSS measurements for scales s between 20 and 160 h
�1Mpc

with a bin width of 5 h
�1Mpc. Sánchez et al. (2016) perform ex-

tensive tests of this model using the large-volume Minerva N-body
simulations (Grieb et al. 2015) to show that it can be used to extract
cosmological information from three clustering wedges without in-
troducing any significant systematic errors.

Beutler et al. (2016b) analyses the anisotropic power spectrum
using the estimator suggested in Bianchi et al. (2015) and Scoc-
cimarro (2015), which employs Fast Fourier Transforms to mea-
sure all relevant higher order multipoles. The analysis uses power
spectrum bins of �k = 0.01h/Mpc and makes use of scales up
to kmax = 0.15h Mpc�1 for the monopole and quadrupole and
kmax = 0.1h Mpc�1 for the hexadecapole. These measurements
are then compared to a model based on renormalized perturba-
tion theory (Taruya et al. 2010). This model has been extensively
tested with N-body simulations in configuration (e.g. de la Torre
and Guzzo 2012) and Fourier space (e.g. Beutler et al. 2012).
The covariance matrix used in this analysis has been derived from
20482 Multidark-Patchy mock catalogues and the reduces �

2 for
all redshift bins is close to 1.

2 The NGC uses only 2045 mock catalogues.

The methodology in Grieb et al. (2016) is based on the ap-
plication of the clustering wedges statistic to Fourier space. Their
analysis uses three power spectrum wedges, measured in wavenum-
ber bins of �k = 0.005 h Mpc�1, up to the mildly non-linear
regime, k < 0.2 h Mpc�1. The full shape of these measurements
is fitted with theoretical predictions based on the same underlying
model of non-linearities, bias and RSD as in Sánchez et al. (2016).
Thus, these two complementary analyses represent the first time
that the same model is applied in configuration and Fourier space
fits. The methodology has been validated using the Minerva sim-
ulations and mock catalogues and found to give unbiased cosmo-
logical constraints. Besides the covariance matrix, which is derived
from 2045 MD-Patchy mock catalogues, this analysis depends on
a framework for the wedge window function, which was developed
based on the recipe for the power spectrum multipoles of Beutler
et al. (2014a). The power spectrum wedges of the NGC and SGC
sub-samples in the low-redshift bin are modelled with two different
bias, RSD, and shot noise parameters, while the intermediate and
high redshift bins are fitted with the same nuisance parameters for
the two sub-samples.

The constraints on DM(z)/rd, H(z) ⇥ rd and f�8(z) pro-
duced by each of the four individual methods are shown in Fig. 6
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• Final anisotropic BAO measurements from BOSS.

• Post-reconstruction anisotropic analyses.

• Complete agreement with Planck ΛCDM predictions.

Anisotropic BAO measurements
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Figure 4. Two-dimensional 68 and 95 per cent marginalized constraints on DM (z) ⇥ (rd,fid/rd) and H(z) ⇥ (rd/rd,fid) obtained by fitting the BAO
signal in the post-reconstruction monopole and quadrupole in configuration and Fourier space. The black solid lines represent the combination of these results
into a set of consensus BAO-only constraints, as described in Section 8.2. The blue solid lines correspond to the constraints inferred from the Planck CMB
temperature and polarization measurements under the assumption of a ⇤CDM model.

Table 3. Summary table of post-reconstruction BAO-only constraints on DM ⇥
�
rd,fid/rd

�
and H ⇥

�
rd/rd,fid

�

Measurement redshift Beutler et al. (b) Vargas-Magaña et al. Ross et al.
P (k) ⇠(s) ⇠(s)

DM ⇥
�
rd,fid/rd

�
[Mpc] z = 0.38 1507 ± 25 1507 ± 22 1512 ± 23

DM ⇥
�
rd,fid/rd

�
[Mpc] z = 0.51 1976 ± 29 1975 ± 27 1971 ± 27

DM ⇥
�
rd,fid/rd

�
[Mpc] z = 0.61 2307 ± 35 2291 ± 37 2296 ± 37

H ⇥
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.38 80.7 ± 2.4 80.4 ± 2.4 81.1 ± 2.2

H ⇥
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.51 90.8 ± 2.2 91.0 ± 2.1 91.1 ± 2.1

H ⇥
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.61 98.8 ± 2.3 99.3 ± 2.5 99.4 ± 2.2

reconstruction monopole and quadrupole, in configuration space
and Fourier space, to constrain the geometric parameter combina-
tions DM (z)/rd and H(z)rd. We now present a brief summary of
these analyses and refer the reader to those papers for more details.

Ross et al. (2016) and Vargas-Magaña et al. (2016) measure
the anisotropic redshift-space two-point correlation function. Both
methods rely on templates for ⇠0 and ⇠2, which have BAO fea-
tures that are altered as function of the relative change in DM (z)
and H(z) away from the values assumed in the fiducial templates
(which are constructed using the fiducial cosmology). These tem-
plates are allowed to vary in amplitude and are combined with
third-order polynomials, for both ⇠0 and ⇠2, that marginalize over
any shape information. This methodology follows that of Xu et
al. (2013); Anderson et al. (2014a) and Anderson et al. (2014b).
Small differences between Ross et al. (2016) and Vargas-Magaña
et al. (2016) exist in the modelling of the fiducial templates and the
choices for associated nuisance parameters. The choices in Ross
et al. (2016) are motivated by the discussion in Seo et al. (2015)
and Ross et al. (2015), and they carry out detailed investigations
to show that observational systematics have minimal impact on
the BAO measurement. Vargas-Magaña et al. (2016) use as their
fiducial methodology the templates and choices used in previous
works (Cuesta et al. 2016a; Anderson et al. 2014a,b) enabling di-
rect comparison of the results with those previous papers. In addi-
tion, Vargas-Magaña et al. (2016) perform a detailed investigation
of possible sources of theoretical systematics in anisotropic BAO
measurements in configuration space, examining the various steps

of the analysis and studying the potential systematics associated
with each step. This work extends the previous effort in Vargas-
Magaña et al. (2014), which focused on systematic uncertainties
associated with fitting methodology, to more general aspects such
as the estimators, covariance matrices, and use of higher order mul-
tipoles in the analysis.

Beutler et al. (2016b) extract the BAO information from
the power spectrum. The analysis uses power spectrum bins of
�k = 0.01 h Mpc�1 and makes use of scales up to kmax =
0.3 h Mpc�1. The covariance matrix used in this analysis has been
derived from the MD-Patchy mocks described in Section 4. The
reduced �

2 for all redshift bins is close to 1.

The two-dimensional 68 and 95 per cent confidence lev-
els (CL) on DM (z)/rd and H(z)rd recovered from these fits
are shown in Fig. 4, where we have scaled our measurements
by the sound horizon scale in our fiducial cosmology, rd,fid =
147.78 Mpc, to express them in the usual units of Mpc and
km s�1Mpc�1. The corresponding one-dimensional constraints
are summarised in Table 3. The results inferred from the three
methods are in excellent agreement. As expected, given the small
differences in methodology and data, the results of Ross et al.
(2016) and Vargas-Magaña et al. (2016) are very similar. Tests on
the results obtained from mock samples show that the results are
correlated to a degree that combining them affords no improvement
in the statistical uncertainty of the measurements. Differences be-
tween the results are at most 0.5� and are typically considerably
smaller; these differences are consistent with expectations (further
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•Clustering measurements contain additional information 
beyond BAO.

Cosmological implications of the BOSS DR11 ξ⊥(s) and ξ∥(s) 5

Figure 2. The same as Figure 1, but for the LOWZ and CMASS DR11 galaxy samples.

the local stellar density and the seeing of the observations,
as described in detail in Anderson et al. (2014).

Figs. 1 and 2 show clustering measurements
from respectively DR10 and DR11. In each case,
the left panels show the angle-averaged ξ(s), and
the right panels the clustering wedges. Upper pan-
els show results from the LOWZ sample and lower
panels show CMASS measurements. The anisotropic
clustering pattern generated by redshift-space distortions
leads to significant differences in the amplitude and shape
of the two clustering wedges, with ξ∥(s) showing a lower
amplitude and a stronger damping of the BAO peak than
ξ⊥ (s). The dashed lines in both figures correspond to the
best-fitting ΛCDM model obtained from the combination of
the LOWZ and CMASS DR11 clustering wedges with CMB
observations from the Planck satellite (Planck Collabora-
tion I 2013) and the CMB polarization measurements from
WMAP (Bennett et al. 2013) as described in Section 4.1,
which provide an excellent description of all our measure-
ments.

2.1.2 Covariance matrix estimation

When comparing our BOSS clustering measurements with
theoretical predictions we assume a Gaussian likelihood
function of the form L ∝ exp(−χ2/2). The calculation of
the χ2 value of a given model requires the knowledge of the
inverse covariance matrix of our measurements, which we
estimate using mock catalogues matching the selection func-
tions of the LOWZ and CMASS samples. These mocks were
constructed from two sets of PTHalos realizations (Scoc-
cimarro & Sheth 2002), corresponding to our fiducial cos-
mology, as described in Manera et al. (2013, 2014)1. Our
CMASS mocks are based on 600 independent simulations
with a box size of Lbox = 2.4 h− 1Gpc, while those of the
LOWZ sample were constructed from a separate set of 500
boxes with the same volume. In the construction of these
mocks, the Northern Galactic Cap (NGC) and Southern
Galactic Cap (SGC) components of the survey were con-

1 http://www.marcmanera.net/mocks/
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•Introduction: cosmology from LSS observations.

•Baryon acoustic oscillations (BAO).

•Galaxy redshift surveys.

•Potential systematic errors.

•Angle-averaged vs anisotropic measurements.

•Present-day BAO measurements.

Lecture 1: BAO


