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•Introduction: cosmology from LSS observations.

•Baryon acoustic oscillations (BAO).

•Galaxy redshift surveys.

•Potential systematic errors.

•Angle-averaged vs anisotropic measurements.

•Present-day BAO measurements.

Lecture 1: BAO



•Redshift-space distortions (RSD).

•The density - velocity relation.

•Impact of RSD on clustering measurements.

•Modelling of RSD beyond the linear regime.

•Current cosmological constraints from BAO & RSD.

•Forecasts for future surveys.

Lecture 2: RSD



•The LSS of the Universe as traced by galaxies.

Redshift-space distortions

2dFGRS



•The observed redshifts are affected 
by peculiar velocities.

•Velocities depend on the density 
field itself.

•RSD are a probe of the density-
velocity relation.

•Constrain the growth-rate of 
cosmic structure.

Redshift-space distortions

(1 + zobs) = (1 + zcos)(1 + v/c)

Figure: Hume Feldman
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Figure 5. The measured pre-reconstruction correlation function (left) and power-spectrum (right) in the directions perpendicular and parallel to the line of
sight. Shown for the NGC only. The anisotropy of the contours seen in both plots show a combination of RSD and AP effect, and hold most of the information
used to constrain DM(z)/rbd, H(z) ⇥ rd and f�8. The BAO ring can be seen in two dimensions on the correlation function plot. In an attempt to show
more clearly the anisotropic BAO ring in the power spectrum, we show in the right panel the two-dimensional power-spectrum divided by the best-fit smooth
component. The wiggles seen in this panel are analogous to the oscillations seen in the left-hand side panel of Fig 3

Table 3. Summary table of pre-reconstruction full-shape constraints on the parameter combinations DM

�
rd,fid/rd

�
, H

�
rd/rd,fid

�
and f�8(z) derived in

our companion papers for each of our three overlapping redshift bins

Measurement redshift Satpathy et al. Beutler et al (b) Grieb et al Sánchez et al
⇠(s) multipoles P (k) multipoles P (k) wedges ⇠(s) wedges

DM

�
rd,fid/rd

�
[Mpc] z = 0.38 1476 ± 33 1549 ± 41 1525 ± 25 1501 ± 27

DM

�
rd,fid/rd

�
[Mpc] z = 0.51 1985 ± 41 2015 ± 53 1990 ± 32 2010 ± 30

DM

�
rd,fid/rd

�
[Mpc] z = 0.61 2287 ± 54 2270 ± 57 2281 ± 43 2286 ± 37

H
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.38 79.3 ± 3.3 82.5 ± 3.2 81.2 ± 2.3 82.5 ± 2.4

H
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.51 88.3 ± 4.1 88.4 ± 4.1 87.0 ± 2.4 90.2 ± 2.5

H
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.61 99.5 ± 4.4 97.0 ± 4.0 94.9 ± 2.5 97.3 ± 2.7

f�8 z = 0.38 0.430 ± 0.054 0.479 ± 0.054 0.498 ± 0.045 0.468 ± 0.053
f�8 z = 0.51 0.452 ± 0.058 0.454 ± 0.051 0.448 ± 0.038 0.470 ± 0.042
f�8 z = 0.61 0.456 ± 0.052 0.409 ± 0.044 0.409 ± 0.041 0.440 ± 0.039

the BOSS measurements for scales s between 20 and 160 h
�1Mpc

with a bin width of 5 h
�1Mpc. Sánchez et al. (2016) perform ex-

tensive tests of this model using the large-volume Minerva N-body
simulations (Grieb et al. 2015) to show that it can be used to extract
cosmological information from three clustering wedges without in-
troducing any significant systematic errors.

Beutler et al. (2016b) analyses the anisotropic power spectrum
using the estimator suggested in Bianchi et al. (2015) and Scoc-
cimarro (2015), which employs Fast Fourier Transforms to mea-
sure all relevant higher order multipoles. The analysis uses power
spectrum bins of �k = 0.01h/Mpc and makes use of scales up
to kmax = 0.15h Mpc�1 for the monopole and quadrupole and
kmax = 0.1h Mpc�1 for the hexadecapole. These measurements
are then compared to a model based on renormalized perturba-
tion theory (Taruya et al. 2010). This model has been extensively
tested with N-body simulations in configuration (e.g. de la Torre
and Guzzo 2012) and Fourier space (e.g. Beutler et al. 2012).
The covariance matrix used in this analysis has been derived from
20482 Multidark-Patchy mock catalogues and the reduces �

2 for
all redshift bins is close to 1.

2 The NGC uses only 2045 mock catalogues.

The methodology in Grieb et al. (2016) is based on the ap-
plication of the clustering wedges statistic to Fourier space. Their
analysis uses three power spectrum wedges, measured in wavenum-
ber bins of �k = 0.005 h Mpc�1, up to the mildly non-linear
regime, k < 0.2 h Mpc�1. The full shape of these measurements
is fitted with theoretical predictions based on the same underlying
model of non-linearities, bias and RSD as in Sánchez et al. (2016).
Thus, these two complementary analyses represent the first time
that the same model is applied in configuration and Fourier space
fits. The methodology has been validated using the Minerva sim-
ulations and mock catalogues and found to give unbiased cosmo-
logical constraints. Besides the covariance matrix, which is derived
from 2045 MD-Patchy mock catalogues, this analysis depends on
a framework for the wedge window function, which was developed
based on the recipe for the power spectrum multipoles of Beutler
et al. (2014a). The power spectrum wedges of the NGC and SGC
sub-samples in the low-redshift bin are modelled with two different
bias, RSD, and shot noise parameters, while the intermediate and
high redshift bins are fitted with the same nuisance parameters for
the two sub-samples.

The constraints on DM(z)/rd, H(z) ⇥ rd and f�8(z) pro-
duced by each of the four individual methods are shown in Fig. 6

c� 2014 RAS, MNRAS 000, 1–30

f(z) =
d lnD

d ln a



•The evolution of      follows the continuity, Euler and 
Poisson equations.

•Sub-horizon modes (             ) are described by

•The solution to this equation is known as the growth factor

•Normalised to give                during matter domination.

The growth of density fluctuations
�m

k � H
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5⌦m

2

H(a)

H0

Z a

0

da1

(a1H(a1)/H0)3

D1 = a



•The evolution of       is given by the continuity equation.

•Using our solution for      we find

•Using that                              and defining

 

The peculiar velocity field
vm

Using the fact that 
during matter dom.
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•The velocity field is given by the gradient of

•The growing mode of the velocity field represents matter 
flowing to/from over/under-dense regions.

The peculiar velocity field
vm

vj(k, a) = i
kj
k2

Hf(a)�m(k, a)



•The velocity field is given by the gradient of

•The growing mode of the velocity field represents matter 
flowing to/from over/under-dense regions.

•Measurements of       and      allow us to measure        .

•Possible test of deviations from the predictions of GR.

The peculiar velocity field
vm

vm �m vj(k, a) = i
kj

k2
aHf(a)�m(k, a)

f(z) ⇠= ⌦m(z)0.55
GR prediction that 

can be tested.

vj(k, a) = i
kj
k2

Hf(a)�m(k, a)



•The observed redshifts are given by

•Using         to infer the distance to a galaxy we find

The impact of peculiar velocities

zobs = z + (1 + z)
vk
c

zobs = z + (1 + z)
vk
c

s = �(zobs) = �(z) +
d�

dz
(z)�z,

= �(z) +
1

H(z)
vk.



•RSD do not change the total number of galaxies

•The volume elements are related by the Jacobian

•Using the solution for the peculiar velocity field, we find

•The power spectrum is then given by (Kaiser 1987).

Redshift-space distortions

n(s) d3s = n(r) d3r
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•We observe the distribution of galaxies

•The redshift-space galaxy density is then

•The galaxy power spectrum is given by

•This result can also be expressed as

Redshift-space distortions

�g = b�m vg = vm

�sg(k) = �g(k) + �m(k)f(z)µ
2
k

= �g(k)
�
1 + �(z)µ2

k

�
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b
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P s
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•Decompose the power spectrum into Legendre multipoles

M o n o p o l e Q u a d r u p o l e H e x a d e c a p o l e 
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Legendre multipoles
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•Decompose the power spectrum into Legendre multipoles

•In linear theory, only multipoles with            survive:

Legendre multipoles
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•The Legendre multipoles in config.-space are given by

     leading to (Hamilton 1998):

   

Legendre multipoles
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The non-linear regime
Cosmology from the CMASS ξ⊥(s) and ξ ∥(s) 1207

Figure 3. The points correspond to the mean monopole (panel a),
quadrupole (panel b) and hexadecapole (panel c) from our ensemble of
mock catalogues. The shaded regions indicate the variance from the differ-
ent realizations. Non-linear evolution distorts the shape of these multipoles
which deviate from the linear theory predictions (dashed lines). These dis-
tortions are well described by the parametrization presented in Section 3,
shown by the solid lines. To highlight the features on large scales, these mea-
surements are rescaled by (s/rs)2.5, where rs = 107.4 h− 1 Mpc corresponds
to the sound horizon at the drag redshift for our fiducial cosmology.

where PL(k) is the linear-theory real-space power spectrum, b is
the bias factor and β = f/b, with f = d ln D

d ln a
, i.e. the logarithmic

derivative of the growth factor D(a). In this case, all multipoles
with ℓ > 4 vanish exactly. Even though this simple picture will be
approximately valid when the amplitude of the density fluctuations
is small, non-linear evolution introduces deviations from this be-
haviour (Crocce & Scoccimarro 2008; Sánchez, Baugh & Angulo
2008; Smith, Scoccimarro & Sheth 2008). This can be clearly seen
in Fig. 3, where the dashed lines correspond to the linear theory
predictions for the multipoles ξℓ(s). Although it is located at large
scales, the differences in the appearance of the BAO signal are
significant, as non-linear growth damps the BAO feature. This is
particularly noticeable in the quadrupole, where the BAO signal is
almost completely erased. These effects must be taken into account
when attempting to extract precision cosmological information from
these statistics.

Much work has been devoted over recent years to modelling the
effects of non-linear evolution and redshift-space distortions. Pio-
neered by the work of Crocce & Scoccimarro (2006) on Renormal-
ized Perturbation Theory (hereafter RPT), several new approaches
to perturbation theory have been developed in recent years (e.g.
Matarrese & Pietroni 2007, 2008; Matsubara 2008a,b; Pietroni

2008; Taruya & Hiramatsu 2008; Anselmi, Matarrese & Pietroni
2011; Anselmi & Pietroni 2012; Wang & Szalay 2012). In these
methods, the series expansion describing the power spectrum of
standard perturbation theory is reorganized and some of the terms
are re-summed into a function G(k), usually called propagator, that
can be factorized out of the series. The remaining terms contain
mode-coupling contributions, PMC(k), to the final non-linear power
spectrum, which can then be written as P(k) = PL(k)G(k)2 + PMC(k).
These approaches provide a better understanding of the effects of
non-linear evolution on the shape of the two-point statistics, such
as the power spectrum and the correlation function, in real space.
However, the extension of these results to the halo clustering in red-
shift space is somewhat more complicated. Although several recent
studies have provided non-linear descriptions of redshift-space dis-
tortions for the matter and halo density fields (Scoccimarro 2004;
Tinker, Weinberg & Zheng 2006; Tinker 2007; Matsubara 2008a,b;
Taruya, Nishimichi & Saito 2010; Jennings, Baugh & Pascoli 2011;
Reid & White 2011; de la Torre & Guzzo 2012; Okumura, Seljak
& Desjacques 2012; Taruya, Nishimichi & Bernardeau 2013), the
range of validity of these models is limited and they rely on free
parameters to fit the results from N-body simulations.

In this work, we follow a simple approach and parametrize the
non-linear two-dimensional power spectrum as

P (µ, k) =
(

1
1 + (kf σvµ)2

)2

(1 + βµ2)2PNL(k), (10)

where

PNL(k) = b2
[
PL(k) e− (kσv)2 + AMC P1loop(k)

]
, (11)

and b, σ v and AMC are free parameters. Here, P1loop(k) is given by

P1loop(k) = 1
4π3

∫
d3q |F2(k − q, q)|2P (|k − q|)P (q), (12)

where F2(k, q) is the standard second-order kernel of perturbation
theory.

The description of the non-linear power spectrum of equation (11)
is motivated by RPT. To a good approximation, the non-linear
propagator G(k) is of Gaussian form, while, at large scales, equa-
tion (12) contains the leading order contribution to the full PMC(k)
(see Crocce, Scoccimarro & Bernardeau 2012, for a more detailed
description of these functions). The description of PNL(k) given by
equation (11) is the basis of the parametrization of the non-linear
correlation function proposed by Crocce & Scoccimarro (2008), and
has been shown to give an accurate description of the power spectra
and correlation functions measured from N-body simulations (e.g.
Sánchez et al. 2008; Montesano, Sánchez & Phleps 2010) and real
galaxy samples (Sánchez et al. 2009; Beutler et al. 2011; Blake
et al. 2011; Montesano et al. 2012). In particular, this parametriza-
tion was used by Sánchez et al. (2012) to describe the CMASS
monopole ξ 0(s). The Lorentzian prefactor in equation (10) repre-
sents a damping function which mimics the Finger-of-God effect
(Jackson 1972) corresponding to the assumption of an exponential
galaxy velocity distribution function (Park et al. 1994; Cole, Fisher
& Weinberg 1995).

The solid lines in Fig. 3 correspond to the multipoles ξℓ(s) ob-
tained using the parametrization of equation (10), by fitting the
free parameters in the model. These give an accurate description
of the full shape of the mean monopole and quadrupole from
our mock catalogues on large scales. On the other hand, while
the shape of the mean hexadecapole from the mock catalogues is
well described by the linear theory prediction, the results obtained
from the parametrization of equation (10) only reproduce these
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4.3 The Minerva HOD galaxies 93

Figure 4.2 – Comparison of the mean power spectrum
multipoles of our HOD sample (points) with the PS mul-
tipoles, P lin

l (k ) (dotted lines), of the linear-theory predic-
tions given by equation (4.33), and the smoothed inter-
polation, P smooth

l (k ) (dashed lines). Both the linear and
smoothed multipoles are taken as input for linear and
non-linear predictions of the Gaussian covariance.

panel of Figure 4.1 comparing the 2PCF clustering wedges of both samples.

4.3.3 The LoS-dependent power spectrum
The theoretical prediction for the covariance matrix relies on an estimate for the anisotropic
power spectrum, which ideally is also given by a theoretical recipe. As the simplest case, we
assume a linear prediction for the 2D galaxy power spectrumwhere redshift-space anisotropies
are caused by the linear Kaiser e�ect (Kaiser, 1987, see also Section 2.4.2),

P
lin(k,µ ) = b2PL(k ) (1 + �2µ2)2, (4.33)

where PL(k ) is the linear matter power spectrum (cf., Section 2.3.1) predicted by C��� for the
redshift of the sample, ze� = 0.57, and b is the linear galaxy bias. With these assumptions,
the only non-vanishing PS multipoles — the Legendre moments P` (k ) of the anisotropic power
spectrum as de�ned in equation (3.3) — are the monopole, quadrupole, and hexadecapole.

Figure 4.2 shows the mean PS monopole, quadrupole and hexadecapole measured from the
M������ simulations. The linear theory de�nition of equation (4.33), shown by the dotted lines,
gives an inadequate description of the anisotropic galaxy power spectrum in the quasi-linear
regime. To improve upon this description we performed a smoothing spline interpolation of
our mean PS multipole measurements, P smooth

l
(k ), shown by the dashed lines in Figure 4.2, to

create a noiseless non-linear power spectrum that can be used for covariance predictions,

P
smooth(k ,µ ) = P

smooth
0 (k ) + P smooth

2 (k ) L2(µ ) + P
smooth
4 (k ) L4(µ ). (4.34)

For the estimation of the smoothing length, we take the measured dispersion of the PS multi-
poles into account. The BAOwiggles in the smoothed quadrupole have been slightly damped by
this procedure but, due to the small signal-to-noise ratio of the BAO feature in the quadrupole,
this does not a�ect the predicted covariance.
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•RSD deviate from linear theory predictions even at high z.

•High-density peaks are characterised by large velocity 
dispersions -> the figers-of-God effect.

780 Million light-years

The non-linear regime



•RSD deviate from linear theory predictions even at high z.

•High-density peaks are characterised by large velocity 
dispersions -> the figers-of-God effect.

•The non-linear power spectrum is often described as

The non-linear regime

P (k, µ) = W1(ifkµ)Pnovir(k, µ),

Coherent flow towards 
high-density regions.

Non-linear corrections associated 
with virialized regions



•Cosmological analysis of the final BOSS (Sánchez et al. 
2017, Grieb et al. 2017, Salazar-Albornoz 2017)

Modelling BAO & RSD
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•We describe galaxy bias as (Chan et al. 2012)

   where

•We model the FoG factor as 

Modelling BAO & RSD

G2(�v) = (rij�v)
2 � (r2�v)

2,

�3G = G2(�)� G2(�v),

�g = b1� +
b2
2
�2 + �2 G2 + ��

3 �3G + . . .

W1(�) =
1p

1� �2a2vir
exp

⇣ �2�2
v

1� �2a2vir

⌘
,



•The non-virial power spectrum has three contributions

Modelling BAO & RSD

P (1)
novir(k, µ) = Pgg(k) + 2fµ2Pg✓(k) + f2µ4P✓✓(k)

P (3)
novir(k, µ) =

Z
qz
q2

(kz � qz)

(k� q)2
(b1 + fµ2

q)(b1 + fµ2
k�q)

⇥ P�✓(k � q)P�✓(q)d
3q.

P (2)
novir(k, µ) =

Z
qz
q2

h
B✓DsDs(q,k� q,�k)

+B✓DsDs(q,�k,k� q)
i
,



Anisotropic clustering
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Figure 5. The measured pre-reconstruction correlation function (left) and power spectrum (middle) in the directions perpendicular and parallel to the line of
sight, shown for the NGC only in the redshift range 0.50 < z < 0.75. In each panel, the color scale shows the data and the contours show the prediction of the
best-fit model. The anisotropy of the contours seen in both plots reflects a combination of RSD and the AP effect, and holds most of the information used to
separately constrain DM (z)/rd, H(z)rd, and f�8. The BAO ring can be seen in two dimensions on the correlation function plot. To more clearly show the
anisotropic BAO ring in the power spectrum, the right panel plots the two-dimensional power-spectrum divided by the best-fit smooth component. The wiggles
seen in this panel are analogous to the oscillations seen in the top left panel of Fig 3.

Table 4. Summary table of pre-reconstruction full-shape constraints on the parameter combinations DM ⇥
�
rd,fid/rd

�
, H⇥

�
rd/rd,fid

�
, and f�8(z) derived

in the supporting papers for each of our three overlapping redshift bins

Measurement redshift Satpathy et al. Beutler et al. (b) Grieb et al. Sánchez et al.
⇠(s) multipoles P (k) multipoles P (k) wedges ⇠(s) wedges

DM ⇥
�
rd,fid/rd

�
[Mpc] z = 0.38 1476 ± 33 1549 ± 41 1525 ± 25 1501 ± 27

DM ⇥
�
rd,fid/rd

�
[Mpc] z = 0.51 1985 ± 41 2015 ± 53 1990 ± 32 2010 ± 30

DM ⇥
�
rd,fid/rd

�
[Mpc] z = 0.61 2287 ± 54 2270 ± 57 2281 ± 43 2286 ± 37

H ⇥
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.38 79.3 ± 3.3 82.5 ± 3.2 81.2 ± 2.3 82.5 ± 2.4

H ⇥
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.51 88.3 ± 4.1 88.4 ± 4.1 87.0 ± 2.4 90.2 ± 2.5

H ⇥
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.61 99.5 ± 4.4 97.0 ± 4.0 94.9 ± 2.5 97.3 ± 2.7

f�8 z = 0.38 0.430 ± 0.054 0.479 ± 0.054 0.498 ± 0.045 0.468 ± 0.053
f�8 z = 0.51 0.452 ± 0.058 0.454 ± 0.051 0.448 ± 0.038 0.470 ± 0.042
f�8 z = 0.61 0.456 ± 0.052 0.409 ± 0.044 0.409 ± 0.041 0.440 ± 0.039

dence contour derived from Planck 2015 data assuming a ⇤CDM
cosmology. We illustrate the combination of these full shape results
with the post-reconstruction BAO results in Fig. 10 below.
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Figure 5. The measured pre-reconstruction correlation function (left) and power spectrum (middle) in the directions perpendicular and parallel to the line of
sight, shown for the NGC only in the redshift range 0.50 < z < 0.75. In each panel, the color scale shows the data and the contours show the prediction of the
best-fit model. The anisotropy of the contours seen in both plots reflects a combination of RSD and the AP effect, and holds most of the information used to
separately constrain DM (z)/rd, H(z)rd, and f�8. The BAO ring can be seen in two dimensions on the correlation function plot. To more clearly show the
anisotropic BAO ring in the power spectrum, the right panel plots the two-dimensional power-spectrum divided by the best-fit smooth component. The wiggles
seen in this panel are analogous to the oscillations seen in the top left panel of Fig 3.
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, and f�8(z) derived

in the supporting papers for each of our three overlapping redshift bins
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dence contour derived from Planck 2015 data assuming a ⇤CDM
cosmology. We illustrate the combination of these full shape results
with the post-reconstruction BAO results in Fig. 10 below.
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anisotropic BAO ring in the power spectrum, the right panel plots the two-dimensional power-spectrum divided by the best-fit smooth component. The wiggles
seen in this panel are analogous to the oscillations seen in the top left panel of Fig 3.

Table 4. Summary table of pre-reconstruction full-shape constraints on the parameter combinations DM ⇥
�
rd,fid/rd

�
, H⇥

�
rd/rd,fid

�
, and f�8(z) derived

in the supporting papers for each of our three overlapping redshift bins

Measurement redshift Satpathy et al. Beutler et al. (b) Grieb et al. Sánchez et al.
⇠(s) multipoles P (k) multipoles P (k) wedges ⇠(s) wedges

DM ⇥
�
rd,fid/rd

�
[Mpc] z = 0.38 1476 ± 33 1549 ± 41 1525 ± 25 1501 ± 27

DM ⇥
�
rd,fid/rd

�
[Mpc] z = 0.51 1985 ± 41 2015 ± 53 1990 ± 32 2010 ± 30

DM ⇥
�
rd,fid/rd

�
[Mpc] z = 0.61 2287 ± 54 2270 ± 57 2281 ± 43 2286 ± 37

H ⇥
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.38 79.3 ± 3.3 82.5 ± 3.2 81.2 ± 2.3 82.5 ± 2.4

H ⇥
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.51 88.3 ± 4.1 88.4 ± 4.1 87.0 ± 2.4 90.2 ± 2.5

H ⇥
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.61 99.5 ± 4.4 97.0 ± 4.0 94.9 ± 2.5 97.3 ± 2.7

f�8 z = 0.38 0.430 ± 0.054 0.479 ± 0.054 0.498 ± 0.045 0.468 ± 0.053
f�8 z = 0.51 0.452 ± 0.058 0.454 ± 0.051 0.448 ± 0.038 0.470 ± 0.042
f�8 z = 0.61 0.456 ± 0.052 0.409 ± 0.044 0.409 ± 0.041 0.440 ± 0.039

dence contour derived from Planck 2015 data assuming a ⇤CDM
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anisotropic BAO ring in the power spectrum, the right panel plots the two-dimensional power-spectrum divided by the best-fit smooth component. The wiggles
seen in this panel are analogous to the oscillations seen in the top left panel of Fig 3.
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Figure 5. The measured pre-reconstruction correlation function (left) and power spectrum (middle) in the directions perpendicular and parallel to the line of
sight, shown for the NGC only in the redshift range 0.50 < z < 0.75. In each panel, the color scale shows the data and the contours show the prediction of the
best-fit model. The anisotropy of the contours seen in both plots reflects a combination of RSD and the AP effect, and holds most of the information used to
separately constrain DM (z)/rd, H(z)rd, and f�8. The BAO ring can be seen in two dimensions on the correlation function plot. To more clearly show the
anisotropic BAO ring in the power spectrum, the right panel plots the two-dimensional power-spectrum divided by the best-fit smooth component. The wiggles
seen in this panel are analogous to the oscillations seen in the top left panel of Fig 3.
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, and f�8(z) derived
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dence contour derived from Planck 2015 data assuming a ⇤CDM
cosmology. We illustrate the combination of these full shape results
with the post-reconstruction BAO results in Fig. 10 below.
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separately constrain DM (z)/rd, H(z)rd, and f�8. The BAO ring can be seen in two dimensions on the correlation function plot. To more clearly show the
anisotropic BAO ring in the power spectrum, the right panel plots the two-dimensional power-spectrum divided by the best-fit smooth component. The wiggles
seen in this panel are analogous to the oscillations seen in the top left panel of Fig 3.
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dence contour derived from Planck 2015 data assuming a ⇤CDM
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Figure 1. The power spectrum wedges for NGC and SGC of the BOSS DR12 combined sample in the low (upper) and high (lower
panel) redshift bin defined in Table 1. Error bars are derived as the square root of the diagonal entries of Patchy covariance matrix
(see section 2.3). The model predictions are obtained from the best-fit ⇤CDM model using the the maximum-likelihood parameters of a
simultaneous fit to the Planck 2015 CMB observations and the BOSS DR12 Fourier space wedges, P3w,n (k ), of both galactic caps. The
clustering+RSD model for the latter is described in section 3. The low redshift bin fit used separate bias, RSD, and shot noise parameters
for NGS (left-hand panels) and SGC (right-hand panels), whereas the high bin used only one set of nuisance parameters.

where �K`0 is the Kronecker delta ensuring that the shot-noise
contribution is only subtracted from the monopole.

The weighted quadrupole and hexadecapole density
fields can be written as

F2(k) =
3
2

X

i, j

k̂ i k̂ j Qi j (k) � 1
2

F (k) and (16)

F4(k) =
35
8

X

i, j,k,l

k̂ i k̂ j k̂k k̂ l Qi jkl (k) � 15
4

F2(k) +
3
8

F (k),

where Qi j (k) and Qi jkl (k) are the Fourier transforms of

Qi j (x) = x̂i x̂ j F (x) and Qi jkl (x) = x̂i x̂ j x̂k x̂l F (x), (17)

respectively. Due to the symmetries of the Q · tensors, the
calculation of F̂2(k) needs six FFTs in addition to the one of
the original FKP estimator, calculating F̂4(k) requires 15 ad-
ditional transforms. Because of the low computational costs
of FFTs, even for large grid sizes, the computing time is neg-
ligible compared to the original Yamamoto-Blake estimator.

For time e�ciency, we adopt the FFT-Yamamoto
scheme indirectly because it does not directly apply to the
top-hat µ-kernel for wedges. The power spectrum multipoles
up to the hexadecapole are measured with the fast estimator

and then the clustering wedges are estimated using

P
µ2
µ1 (k) =

X

`2 {0,2,4}
Tn` P` (k). (18)

Here, Tn` are the elements of a transformation matrix,

Tn` ⌘
1

µ2 � µ1

Z µ2

µ1

L` (µ) dµ. (19)

The agreement of this estimate with the the one given by
equation (11) is shown for a CMASS-like catalogue in ap-
pendix B2.

Before applying the FFTs,F (x) is calculated on a mesh
using 12003 grid cells applying the trangular-shaped cloud
(TSC) scheme to assign galaxies and randoms to the cells.
The side length of the grid is 4000 h

�1 Mpc. After the FFT,
the mass-assignment scheme is corrected for by using the ap-
proximative anti-aliasing correction that was used in Mon-
tesano et al. (2010): each Fourier mode is divided by the
corrective term C1(k) given in Jing (2005, equation 20). This
yields a more precise power spectrum estimate than dividing
by the Fourier transform of the mass assignment function.

The final measurements are estimated by averaging
equations (11) and (15) over spherical k-space shells. We
adopt the convention to define wavenumber bins with �k =

MNRAS 000, 1–35 (2016)

•BOSS DR12 clustering wedges: 
Sánchez et al. (2017a) Grieb et al. (2017)
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Figure 15. Left-hand panel: Comparison of f�8(z) measurements across previous BOSS measurements in DR11 (Alam et al. 2015b; Beutler et al. 2014a;
Samushia et al. 2014; Sánchez et al. 2014) and DR12 (Gil-Marı́n et al. 2016b,c; Chuang et al. 2016) samples. Right-hand panel: The f�8(z) results from this
work compared with the measurements of the 2dfGRS (Percival et al. 2004b) and 6dFGS (Beutler et al. 2012), the GAMA (Blake et al. 2013), the WiggleZ
(Blake et al. 2012), the VVDS (Guzzo et al. 2008), and the VIPERS (de la Torre et al. 2013) surveys, as well as the measurements from the SDSS-I and
-II main galaxy sample (Howlett et al. 2015, MGS) and the SDSS-II LRG sample (Oka et al. 2014, DR7). We have plotted conditional constraints on f�8

assuming a Planck ⇤CDM background cosmology. This is one of the best evidence of how growth rate measurements from BOSS again reaffirm the validity
of General Relativity in large scales.

9 COSMOLOGICAL PARAMETERS

9.1 Data sets

We now turn to cosmological interpretation of our results. We will
use the consensus measurements, including our estimated system-
atic error contribution to the covariance matrix, from the BAO-only
and BAO+FS columns of Table 3. In our subsequent figures and ta-
bles, the former case is simply labeled “BAO.”

Following Aubourg et al. (2015), we include the 6dFGS and
SDSS MGS BAO measurements and the BOSS DR11 Ly↵ forest
BAO measurements (see Fig. 14 and §8.3). These are largely in-
dependent and have utilized similar methodologies. We opt not to
include other BAO measurements, notably those from photomet-
ric clustering and from the WiggleZ survey (Blake et al. 2011a,
2012), as the volumes partially overlap BOSS and the errors are
sufficiently large that a proper inclusion would not substantially
affect the results. As shown in Aubourg et al. (2015), these mea-
surements are in good agreement with those from BOSS. We note
in particular the good match to the WiggleZ results, as this was a
sample of strongly star-forming galaxies in marked contrast to the
red massive galaxies used in BOSS. The dual-tracer opportunity
was studied extensively with a joint analysis of the overlap region
of WiggleZ and BOSS (Beutler et al. 2016a).

We further opt not to include other RSD measurements be-
yond BOSS, as they come from a variety of analysis and modelling
approaches. One can see from Figure 15 that the measurements
from other surveys are consistent with those from BOSS within
their quoted errors, and the error bars in all cases are large enough
that there are potential gains from combining multiple measure-
ments. However, in contrast to BAO measurements, systematic er-
rors associated with non-linear clustering and galaxy bias are a ma-
jor component of the error budget in any RSD analysis, and these
systematics may well be covariant from one analysis to another in
a way that is difficult to quantify. Because of systematic error con-
tributions, we do not consider it feasible to carry out a robust joint
RSD analysis with other measurements.

In all cases, we combine with CMB anisotropy data from the

Planck 2015 release (Planck Collaboration XIII 2015). We use the
power spectra for both temperature and polarization; in detail, we
use the likelihoods plik dx11dr2 HM v18 TTTEEE and lowTEB
for the high and low multipoles, respectively. We do not include
the information from the lensing of the CMB in the 4-point corre-
lations of the CMB temperature anisotropies. We will discuss the
impact of the recent (Planck Collaboration XLVI 2016) large-angle
polarization results in §9.4.

We note that there is some mild tension between the Planck
2015 results and those from combining WMAP, SPT, and ACT
(Calabrese et al. 2013; Spergel et al. 2015; Bennett et al. 2016).
The Planck data set yields a mildly higher matter density ⌦mh

2,
which for ⇤CDM implies a higher ⌦m and �8 and a lower H0.
As in the DR11 results, our BOSS results for ⇤CDM fall in be-
tween these two and therefore do not prefer either CMB option.
We have presented non-Planck results in Anderson et al. (2014b)
and Aubourg et al. (2015) and do not repeat that here, as the sense
of the differences has not changed.

Finally, for some cases, we utilize measurements of the
distance-redshift relation from Type Ia supernovae (SNe) from the
Joint Lightcurve Analysis (JLA, Betoule et al. 2014), which com-
bined SNe from the SDSS-II Supernova Survey (Sako et al. 2014)
and the Supernova Legacy Survey 3-year data set (Conley et al.
2011) together with local and high-z data sets. The combination
of SN measurements with BAO is particularly powerful for con-
straining the low-redshift distance scale (e.g., Mehta et al. 2012;
Anderson et al. 2014b). The SNe provide a higher precision mea-
surement of relative distance at lower redshift where the BAO is
limited by cosmic volume, but the BAO provides an absolute scale
that connects to higher redshift and particularly to the CMB acous-
tic scale at z = 1000. The combination of BAO and SN data also
allows an “inverse distance ladder” measurement of H0 that uses
the CMB-based calibration of rd but is almost entirely insensitive
to the dark energy model and space curvature over the range al-
lowed by observations (Aubourg et al. 2015).

c� 2016 RAS, MNRAS 000, 1–38



•Observational effects of cosmic acceleration:

     - Expansion history of the Universe:

     - Growth of density fluctuations:

•Both effects can be probed by LSS observations

Cosmology from LSS observations

r(z) =

Z z

0

c dz
0

H(z0)
H(z) =

ȧ

a

� =
⇢� ⇢̄

⇢̄
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•Clustering measurements contain additional information 
beyond BAO.

Cosmological implications of the BOSS DR11 ξ⊥(s) and ξ∥(s) 5

Figure 2. The same as Figure 1, but for the LOWZ and CMASS DR11 galaxy samples.

the local stellar density and the seeing of the observations,
as described in detail in Anderson et al. (2014).

Figs. 1 and 2 show clustering measurements
from respectively DR10 and DR11. In each case,
the left panels show the angle-averaged ξ(s), and
the right panels the clustering wedges. Upper pan-
els show results from the LOWZ sample and lower
panels show CMASS measurements. The anisotropic
clustering pattern generated by redshift-space distortions
leads to significant differences in the amplitude and shape
of the two clustering wedges, with ξ∥(s) showing a lower
amplitude and a stronger damping of the BAO peak than
ξ⊥ (s). The dashed lines in both figures correspond to the
best-fitting ΛCDM model obtained from the combination of
the LOWZ and CMASS DR11 clustering wedges with CMB
observations from the Planck satellite (Planck Collabora-
tion I 2013) and the CMB polarization measurements from
WMAP (Bennett et al. 2013) as described in Section 4.1,
which provide an excellent description of all our measure-
ments.

2.1.2 Covariance matrix estimation

When comparing our BOSS clustering measurements with
theoretical predictions we assume a Gaussian likelihood
function of the form L ∝ exp(−χ2/2). The calculation of
the χ2 value of a given model requires the knowledge of the
inverse covariance matrix of our measurements, which we
estimate using mock catalogues matching the selection func-
tions of the LOWZ and CMASS samples. These mocks were
constructed from two sets of PTHalos realizations (Scoc-
cimarro & Sheth 2002), corresponding to our fiducial cos-
mology, as described in Manera et al. (2013, 2014)1. Our
CMASS mocks are based on 600 independent simulations
with a box size of Lbox = 2.4 h− 1Gpc, while those of the
LOWZ sample were constructed from a separate set of 500
boxes with the same volume. In the construction of these
mocks, the Northern Galactic Cap (NGC) and Southern
Galactic Cap (SGC) components of the survey were con-

1 http://www.marcmanera.net/mocks/
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The dark energy equation of state



The dark energy equation of state
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Planck + BOSS ⇠(s)

⌦m = 0.249+0.034
�0.026

wDE = �1.31+0.21
�0.16
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Planck + BOSS ⇠(s)

⌦m = 0.249+0.034
�0.026

wDE = �1.31+0.21
�0.16

The dark energy equation of state
Sánchez et al.(2014)



Planck + BOSS ⇠(s)

⌦m = 0.249+0.034
�0.026

wDE = �1.31+0.21
�0.16

Planck + BOSS ⇠�µ(s)

⌦m = 0.288± 0.016

wDE = �1.051± 0.076

The dark energy equation of state
Sánchez et al.(2014)



•BOSS DR12 clustering wedges: 

Anisotropic clustering

6 J. N. Grieb et al.
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Figure 1. The power spectrum wedges for NGC and SGC of the BOSS DR12 combined sample in the low (upper) and high (lower
panel) redshift bin defined in Table 1. Error bars are derived as the square root of the diagonal entries of Patchy covariance matrix
(see section 2.3). The model predictions are obtained from the best-fit ⇤CDM model using the the maximum-likelihood parameters of a
simultaneous fit to the Planck 2015 CMB observations and the BOSS DR12 Fourier space wedges, P3w,n (k ), of both galactic caps. The
clustering+RSD model for the latter is described in section 3. The low redshift bin fit used separate bias, RSD, and shot noise parameters
for NGS (left-hand panels) and SGC (right-hand panels), whereas the high bin used only one set of nuisance parameters.

where �K`0 is the Kronecker delta ensuring that the shot-noise
contribution is only subtracted from the monopole.

The weighted quadrupole and hexadecapole density
fields can be written as

F2(k) =
3
2

X

i, j

k̂ i k̂ j Qi j (k) � 1
2

F (k) and (16)

F4(k) =
35
8

X

i, j,k,l

k̂ i k̂ j k̂k k̂ l Qi jkl (k) � 15
4

F2(k) +
3
8

F (k),

where Qi j (k) and Qi jkl (k) are the Fourier transforms of

Qi j (x) = x̂i x̂ j F (x) and Qi jkl (x) = x̂i x̂ j x̂k x̂l F (x), (17)

respectively. Due to the symmetries of the Q · tensors, the
calculation of F̂2(k) needs six FFTs in addition to the one of
the original FKP estimator, calculating F̂4(k) requires 15 ad-
ditional transforms. Because of the low computational costs
of FFTs, even for large grid sizes, the computing time is neg-
ligible compared to the original Yamamoto-Blake estimator.

For time e�ciency, we adopt the FFT-Yamamoto
scheme indirectly because it does not directly apply to the
top-hat µ-kernel for wedges. The power spectrum multipoles
up to the hexadecapole are measured with the fast estimator

and then the clustering wedges are estimated using

P
µ2
µ1 (k) =

X

`2 {0,2,4}
Tn` P` (k). (18)

Here, Tn` are the elements of a transformation matrix,

Tn` ⌘
1

µ2 � µ1

Z µ2

µ1

L` (µ) dµ. (19)

The agreement of this estimate with the the one given by
equation (11) is shown for a CMASS-like catalogue in ap-
pendix B2.

Before applying the FFTs,F (x) is calculated on a mesh
using 12003 grid cells applying the trangular-shaped cloud
(TSC) scheme to assign galaxies and randoms to the cells.
The side length of the grid is 4000 h

�1 Mpc. After the FFT,
the mass-assignment scheme is corrected for by using the ap-
proximative anti-aliasing correction that was used in Mon-
tesano et al. (2010): each Fourier mode is divided by the
corrective term C1(k) given in Jing (2005, equation 20). This
yields a more precise power spectrum estimate than dividing
by the Fourier transform of the mass assignment function.

The final measurements are estimated by averaging
equations (11) and (15) over spherical k-space shells. We
adopt the convention to define wavenumber bins with �k =

MNRAS 000, 1–35 (2016)
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•Our results are consistent 
with the ΛCDM model.

•Assuming a constant

The dark energy equation of state

wDE(a) = w0 + wa (1 � a)

Sánchez et al. (2017a)

0.16 0.24 0.32 0.40
⌦m

�1.75

�1.50

�1.25

�1.00

�0.75

w
D

E

Planck

+ BOSS ⇠3w

+ SN

wDE = �0.991± 0.055

⌦m = 0.308± 0.013



0.16 0.24 0.32 0.40
⌦m

�1.75

�1.50

�1.25

�1.00

�0.75

w
D

E

Planck

+ BOSS ⇠3w

+ SN

•Our results are consistent 
with the ΛCDM model.

•Assuming a constant

•Adding SN information

The dark energy equation of state

wDE(a) = w0 + wa (1 � a)

Sánchez et al. (2017a)

wDE = �0.991± 0.055

⌦m = 0.308± 0.013

wDE = �0.996± 0.042

⌦m = 0.306± 0.010
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•Our results are consistent 
with the ΛCDM model.

•Allowing         to evolve as

The dark energy equation of state

wDE(a) = w0 + wa (1 � a)

Sánchez et al. (2017a)

wDE(a) = w0 + wa (1 � a)

w0 = �0.92 ± 0.11
wa = �0.32 ± 0.40



•General relativity predicts

with 

• Deviations from this value 
could indicate a failure of GR.

• Combining Planck+BOSS

Testing general relativity

f (z) = ⌦m(z)�

� ' 0.55� ' 0.55

� = 0.61 ± 0.08

Sánchez et al. (2017a)



•Galaxy surveys require considerable resources from the 
community.

•Effort to maximise the information extracted from these 
data sets.

•Question often posed as which statistic or method should 
be used (e.g.           vs        ).

• Additional information can be obtained from the 
combination of different results.

BOSS consensus constraints

P (k) ⇠(s)



• Galaxy clustering information can be compressed into 
a set of parameters D (e.g.                                              ) 

• A set of m measurements Di,       can be combined into a 
set of consensus constraints             (Sánchez et al. 2017b)

BOSS consensus constraints
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•Application to BOSS DR12 results:

•Consensus constraints are up to 20% tighter than the 
most accurate measurement from the original set.

•Good agreement with the Planck ΛCDM prediction.

BOSS consensus constraints
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•Application to BOSS DR12 results:

•BAO-only and full-shape fits are combined into our final 
consensus constraints:

    https://www.sdss3.org/science/boss_publications.php 
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Figure 11. Likelihood contours, showing the 68 per cent and 95 per cent confidence intervals for various combinations of parameters in our three redshift bins.
From left to right we show the constraints on: H(z)(rd/rd,fid) and DM (z)(rd,fid/rd), FAP(z) and DV (z)/rd, f�8(z) and DV (z)/rd, and finally f�8(z)
and FAP(z). The black contours show the constraints from post-reconstruction BAO only, the green contours show the constraints from the pre-reconstruction
full-shape measurements, and the red filled contours show our final BAO+FS combined constraints. These contours include of the systematic error bars quoted
in Section 7. The blue solid lines correspond to the constraints inferred from the Planck CMB measurements under the assumption of a ⇤CDM model.

rived by Sánchez et al. (2016b) from the application of the different
methods to the MD-Patchy mock catalogues.

The solid black contours in Figures 4 and 6 correspond to
the BAO-only and full-shape consensus constraints, respectively,
derived by applying equations (18) and (19) to the results of our
companion papers. The final covariance matrices of our consensus
constraints are obtained by adding the matrices Cc derived from
the combination of the posterior distributions, which represent the
statistical uncertainties of our results, with that of the systematic er-
rors described in Section 7.4. The corresponding one-dimensional
marginalized constraints are listed in the third and fourth columns
of Table 7, where the first error accompanying each value corre-
spond to the statistical 68 per cent CL, and the second one repre-
sents the systematic error assigned to these results (see Section 7.4).

Fig. 10 illustrates the principal observational results of this
paper in the form of confidence contours from the BAO-only
(black) and full-shape (green) consensus constraints in each of
our three redshift bins, for different pairwise combinations of

DM (z)⇥(rd,fid/rd), H(z)⇥(rd/rd,fid), DV (z)/rd, f�8(z), and
the Alcock-Paczynski parameter FAP(z). The filled contours rep-
resent the combination of these results into the final set of BAO+FS
consensus constraints representing the full information obtained
from our pre- and post-reconstruction clustering measurements.
The corresponding one-dimensional constraints are quoted in the
last column of Table 7 and shown as a function of redshift alongside
the ⇤CDM best-fit Planck prediction in Fig. 11. The covariance and
precision matrices are in Table 8.

The statistical uncertainties in DM (z)/rd, H(z)rd, and
f�8(z) are all reduced in our final consensus values, with respect to
those in any individual method or in the BAO-only and full-shape
consensus constraints. The improvement in the statistical uncer-
tainty, with respect to the smallest quoted uncertainty in each of
the individual measurements, is typically 15% for DM (z), 20%
for H(z), and 10% for f�8. These improvements are in agree-
ment with what is expected from tests on the mocks (Sánchez et
al. 2016b). Figure ?? further shows that, on high-fidelity mocks,

c� 2016 RAS, MNRAS 000, 2–36
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•Consensus constraints on                                                  
are in agreement with Planck ΛCDM predictions.

•The error bars include statistical and systematic errors.

•Cosmological implications explored in Alam et al. (2017)

DM(z)/rd,H (z)rd, f�8(z)
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•A new generation of large volume galaxy surveys:

Future galaxy surveys

- eBOSS: LRGs, ELGs, QSO   
at 0.7 < z < 2.8

- HETDEX: Ly-α emitters, 
1.9 < z < 3.5 

- PFS: ELGs, 0.6 < z < 2.4 

- DESI: LRGs, ELGs, QSO   
at 0.4 < z < 3.5

- Euclid: H-α emitters,     
0.6 < z < 2

-



NASA/WMAP science team

BAO & RSD forecasts
•The Fisher information matrix is defined as

•Use a model to predict                                             .

•Assume Gaussian covariance matrices (Grieb et al. 2016)

Fij = �
⌧
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2
(✓ � ✓0)
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2
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•State of the art of galaxy clustering measurements…
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Figure 1. The power spectrum wedges for NGC and SGC of the BOSS DR12 combined sample in the low (upper) and high (lower
panel) redshift bin defined in Table 1. Error bars are derived as the square root of the diagonal entries of Patchy covariance matrix
(see section 2.3). The model predictions are obtained from the best-fit ⇤CDM model using the the maximum-likelihood parameters of a
simultaneous fit to the Planck 2015 CMB observations and the BOSS DR12 Fourier space wedges, P3w,n (k ), of both galactic caps. The
clustering+RSD model for the latter is described in section 3. The low redshift bin fit used separate bias, RSD, and shot noise parameters
for NGS (left-hand panels) and SGC (right-hand panels), whereas the high bin used only one set of nuisance parameters.

where �K`0 is the Kronecker delta ensuring that the shot-noise
contribution is only subtracted from the monopole.

The weighted quadrupole and hexadecapole density
fields can be written as

F2(k) =
3
2

X

i, j

k̂ i k̂ j Qi j (k) � 1
2

F (k) and (16)

F4(k) =
35
8

X

i, j,k,l

k̂ i k̂ j k̂k k̂ l Qi jkl (k) � 15
4

F2(k) +
3
8

F (k),

where Qi j (k) and Qi jkl (k) are the Fourier transforms of

Qi j (x) = x̂i x̂ j F (x) and Qi jkl (x) = x̂i x̂ j x̂k x̂l F (x), (17)

respectively. Due to the symmetries of the Q · tensors, the
calculation of F̂2(k) needs six FFTs in addition to the one of
the original FKP estimator, calculating F̂4(k) requires 15 ad-
ditional transforms. Because of the low computational costs
of FFTs, even for large grid sizes, the computing time is neg-
ligible compared to the original Yamamoto-Blake estimator.

For time e�ciency, we adopt the FFT-Yamamoto
scheme indirectly because it does not directly apply to the
top-hat µ-kernel for wedges. The power spectrum multipoles
up to the hexadecapole are measured with the fast estimator

and then the clustering wedges are estimated using

P
µ2
µ1 (k) =

X

`2 {0,2,4}
Tn` P` (k). (18)

Here, Tn` are the elements of a transformation matrix,

Tn` ⌘
1

µ2 � µ1

Z µ2

µ1

L` (µ) dµ. (19)

The agreement of this estimate with the the one given by
equation (11) is shown for a CMASS-like catalogue in ap-
pendix B2.

Before applying the FFTs,F (x) is calculated on a mesh
using 12003 grid cells applying the trangular-shaped cloud
(TSC) scheme to assign galaxies and randoms to the cells.
The side length of the grid is 4000 h

�1 Mpc. After the FFT,
the mass-assignment scheme is corrected for by using the ap-
proximative anti-aliasing correction that was used in Mon-
tesano et al. (2010): each Fourier mode is divided by the
corrective term C1(k) given in Jing (2005, equation 20). This
yields a more precise power spectrum estimate than dividing
by the Fourier transform of the mass assignment function.

The final measurements are estimated by averaging
equations (11) and (15) over spherical k-space shells. We
adopt the convention to define wavenumber bins with �k =

MNRAS 000, 1–35 (2016)
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Future galaxy surveys



• Predictions for Euclid clustering measurements. 

Future galaxy surveys
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•Construct the likelihood 
function                     , where

•The fisher information 
matrix is simply given by

•BOSS forecasts are in good 
agreement with real results.

Eucid GC forecasts
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•A new generation of large volume galaxy surveys:

Future galaxy surveys

- eBOSS: LRGs, ELGs, QSO   
at 0.7 < z < 2.8

- HETDEX: Ly-α emitters, 
1.9 < z < 3.5 

- PFS: ELGs, 0.6 < z < 2.4 

- DESI: LRGs, ELGs, QSO   
at 0.4 < z < 3.5

- Euclid: H-α emitters,     
0.6 < z < 2

-



•Redshift-space distortions (RSD).

•The density - velocity relation.

•Impact of RSD on clustering measurements.

•Modelling of RSD beyond the linear regime.

•Current cosmological constraints from BAO & RSD.

•Forecasts for future surveys.

Lecture 2: RSD


