Dark Matter II. (some) Candidates and detection

Fabío Iocco fabío.íocco.astro .AT. <u>gmaíl.com</u>

ICTP-SAIFR IFT-UNESP São Paulo

International Centre for Theoretical Physics South American Institute for Fundamental Research LAPIS school @ La Plata, 26/4/18

Forewords to the second class:

The slides of these classes have been put together by looting the excellent ones created by some of the teachers of the "School on Dark Matter", held at ICTP-SAIFR in São Paulo in 2016.

For this second class I have used material from P.D. Serpico, N. Bozorgnia, and F. Calore.

The complete material can be found at this address http://www.ictp-saifr.org/school-on-dark-matter-2/

and I strongly encourage you to download and study them to have a broader view on the subject. As you will remember most of this class was held at a board, and this slides summarize the content to the introduction to WIMP searches, direct and indirect.

RECAP & PLAN

Recent determination (Planck 2015, 68% CL)

 $\Omega_{c}h^{2}=0.1188\pm0.0010$, i.e. $\Omega_{c}\sim0.26$

$$\Omega_X h^2 = 2.74 \times 10^8 \left(\frac{M_X}{\text{GeV}}\right)$$

Y₀ [Main] Goal: compute value of number to entropy density ratio, Y₀

We shall first provide a heuristic argument for the simplest (yet powerful!) toy-model evolution equation for Y

We shall use this equation in different regimes to elucidate a couple of classes (not all!) of DM candidates

Some generalizations will be briefly discussed.

Later (Lec. 4, most likely) we'll come back to sketch a "microscopic" derivation/interpretation of the equation we started with

Caveat: matching Ω_X is one condition for a good DM candidate, not the only one! Remember lecture 2 (collisionless, right properties for LSS structures...)

DM CLASSIFICATION / PARAMETER SPACE

Will discuss different classes based on production mechanisms. However, these are typically linked with masses and couplings as well!

BOLTZMANN EQ. FOR DM DENSITY CALCULATION

Assume that binary interactions of our particle X are present with species of the thermal bath

$XX \leftrightarrow (\text{thermal bath particles})$

If interaction rate $\Gamma = n \sigma v$ very slow wrt Hubble rate H, # of particles conserved covariantly, i.e.

$$\frac{dn}{dt} + 3Hn = 0 \Rightarrow n \propto a^{-3}$$

If interaction rate $\Gamma >> H$, # of particles follows equilibrium, e.g. for non-relativistic particles

$$n_{\rm eq} = g \left(\frac{m T}{2\pi}\right)^{3/2} \exp\left(-\frac{m}{T}\right)$$

REWRITING IN TERMS OF Y AND \times

$$\frac{dn}{dt} + 3H n = -\langle \sigma v \rangle [n^2 - n_{eq}^2] \qquad \frac{dY}{dt} = -s \langle \sigma v \rangle [Y^2 - Y_{eq}^2]$$
$$\frac{dY}{dt} = \frac{d}{dt} \left(\frac{n}{s}\right) = \frac{d}{dt} \left(\frac{na^3}{sa^3}\right) = \frac{1}{sa^3} \frac{d}{dt} (na^3) = \frac{1}{sa^3} \left(a^3 \frac{dn}{dt} + 3a^2 \dot{a}n\right) = \frac{1}{s} \left(\frac{dn}{dt} + 3Hn\right)$$
$$Define x=m/T (m arbitrary mass, either M_x or not); for an iso-entropic expansion one has$$
$$\frac{d}{dt} (a^3s) = 0 \Rightarrow \frac{d}{dt} (aT) = 0 \Rightarrow \frac{d}{dt} (a/x) = \frac{\dot{a}}{x} - \frac{a}{x^2} \dot{x} = 0 \Rightarrow \frac{dx}{dt} = Hx$$
$$\frac{dY}{dx} = -\frac{x s \langle \sigma v \rangle}{H(T=m)} [Y^2 - Y_{eq}^2] \quad \text{radiation-dominated} period$$

More in general (arbitrary s(t) and H(t)):

$$\frac{dY}{dx} = -\sqrt{45\pi}M_{\rm Pl}\,m\frac{h_{\rm eff}(x)\langle\sigma v\rangle}{\sqrt{g_{\rm eff}(x)}\,x^2}\,\left(1-\frac{1}{\sqrt{g_{\rm eff}(x)}\,x^2}\right)$$

M. Srednicki, R. Watkins and K. A. Olive, "Calculations of Relic Densities in the Early Universe," Nucl. Phys. B 310, 693 (1988) P. Gondolo and G. Gelmini, "Cosmic abundances of stable particles: Improved analysis," Nucl. Phys. B 360, 145 (1991).

 $-\frac{1}{3}\frac{d\log h_{\mathrm{eff}}}{d\log x}\right)(Y^2 - Y_{\mathrm{eq}}^2)$

FREEZE-OUT CONDITION

The previous equation is a Riccati equation: no closed form solution exist!

Approximate analytical solutions exist for different hypotheses/regimes

(In the following, we shall assume the choice $m=M_X$)

For h_{eff} ~ const., we can re-write

$$\frac{x}{Y_{\rm eq}}\frac{dY}{dx} = -\frac{\Gamma_{\rm eq}}{H}\left[\left(\frac{Y}{Y_{\rm eq}}\right)^2 - 1\right] \text{ with } \Gamma_{\rm eq} = \langle \sigma v \rangle n_{\rm eq}$$

If $\Gamma_{eq} >> H$ the particle starts from equilibrium condition at sufficiently small x (high-T), when relativistic. Crucial variable to determine the Y_{final} is the freeze-out epoch x_F from condition

$$\Gamma_{\rm eq}(x_F) = H(x_F)$$

RELATIVISTIC FREEZE-OUT

$$\Gamma_{\rm eq}(x_F) = H(x_F)$$

If the solution to this condition yields $x_F << I$, then (Lecture 1)

$$n = g \frac{\zeta(3)}{\pi^2} T^3 \times \left\{ 1(\mathbf{B}), \frac{3}{4}(\mathbf{F}) \right\}$$

comoving abundance stays constant, and independent of x (if dof do not change)

$$Y(x_F) = 0.28 \frac{g \times \{1(B), 3/4(F)\}}{h_{\text{eff}}(x_F)}$$

Today's abundance of such a relativistic freeze-out relic is thus

$$\Omega_X h^2 = 0.0762 \times \left(\frac{M_X}{\text{eV}}\right) \frac{g \times \{1(\text{B}), 3/4(\text{F})\}}{h_{\text{eff}}(x_F)}$$

 $\Omega_{\nu}h^2 \simeq \frac{\sum m_{\nu}}{94 \, \mathrm{eV}}$

For the neutrino case, $h_{eff}=10.75$, $g \times \{ \}=3/2$, thus

Inconsistent with DM for current upper limits!

NON-RELATIVISTIC FREEZE-OUT
to determine
$$x_F$$
 $\Gamma_{eq}(x_F) = H(x_F)$
 $\frac{g\langle \sigma v \rangle}{(2\pi)^{3/2}} M_X^3 x_F^{-3/2} e^{-x_F} = \sqrt{\frac{4\pi^3}{45}} g_{eff} \frac{M_X^2}{x_F^2 M_{Pl}}$
 $x_F^{1/2} e^{-x_F} = \sqrt{\frac{4\pi^3}{45}} g_{eff} \frac{(2\pi)^{3/2}}{M_{Pl}M_X g \langle \sigma v \rangle}$

Thus one obtains

$$Y(x_F) = \frac{n(x_F)}{s(x_F)} = \frac{g}{h_{\text{eff}}} \frac{45}{2\pi^2 (2\pi)^{3/2}} x_F^{3/2} e^{-x_F}$$

which also writes (Note the important result Y(x_F)~ I/< σ v>) $Y(x_F) = \sqrt{\frac{45 g_{\text{eff}}}{\pi}} \frac{x_F}{h_{\text{eff}} M_{\text{Pl}} M_X \langle \sigma v \rangle} = \mathcal{O}(1) \frac{x_F}{M_{\text{Pl}} M_X \langle \sigma v \rangle}$

NON-RELATIVISTIC FREEZE-OUT: INTERPRETATION

$$Y(x_F) \simeq \mathcal{O}(1) \frac{x_F}{M_{\rm Pl} M_X \langle \sigma v \rangle}$$

makes sense, in the Boltzmann suppressed tail: The more it interacts, the later it decouples, the fewer particles around.

Also, plugging numbers (typically $x_F \sim 30$), one has

$$\Longrightarrow \Omega_X h^2 \simeq \frac{0.1 \,\mathrm{pb}}{\langle \sigma v \rangle}$$

dimensionally, for electroweak scale masses and couplings, one gets the right value!

 $\langle \sigma v \rangle \sim \frac{\alpha^2}{m^2} \simeq 1 \, \mathrm{pb} \left(\frac{200 \, \mathrm{GeV}}{m} \right)^2$

But the pre-factor depends from widely different cosmological parameters (Hubble parameter, CMB temperature) and the Planck scale. Is this match simply a coincidence?

Dubbed sometimes "Weakly Interacting Massive Particle" (WIMP) Miracle

ASYMMETRIC DM?

K. Zurek "Asymmetric Dark Matter: Theories, Signatures, and Constraints," Phys. Rept. 537 91 (2014) 1308.0338

- Introduce a DM candidate which is not selfconjugated, allowing for asymmetry in number density
- Use dynamics to relate it to the baryon asymmetry
- Generically one has (κ model dependent!)

$$n_{dm} - \bar{n}_{dm} \neq 0$$

$$n_{dm} - \bar{n}_{dm} \propto n_b - \bar{n}_b$$

$$\frac{\Omega_{dm}}{\Omega_b} = \frac{|n_{dm} - \bar{n}_{dm}|m_{dm}}{n_b m_b} \simeq \kappa \frac{m_{dm}}{m_N}$$

WIMP (NOT GENERIC DM!) SEARCH PROGRAM

✓ Find a consistency between properties of the two classes of particles. Ideally, we would like to calculate abundance and DD/ID signatures \rightarrow link with cosmology/test of production

Direct detection of WIMPs

Billions of WIMPs may be passing through the Earth each second, but they very rarely interact.

- Direct detection experiments operate underground and search for WIMPs via their scattering with atomic nuclei in the detector.
- WIMP velocity ~10⁻³ c → non-relativistic
- Expected recoil energies ~ 10 keV
- Expect < I event/kg/year

WIMP-nucleus interaction

• WIMP-nucleus *elastic* collision:

 $m: {\rm mass} \ {\rm of} \ {\rm WIMP}$ $M: {\rm mass} \ {\rm of} \ {\rm nucleus}$

Direct detection of WIMPs

Billions of WIMPs may be passing through the Earth each second, but they very rarely interact.

- Direct detection experiments operate underground and search for WIMPs via their scattering with atomic nuclei in the detector.
- WIMP velocity ~10⁻³ c → non-relativistic
- Expected recoil energies ~ 10 keV
- Expect < I event/kg/year

The expected event rate

The strongly simplified expected event rate:

$$\Phi_{\chi} = n \langle v \rangle$$

- + $\langle v \rangle$: average WIMP velocity with respect to the detector
- n :WIMP number density $n = \frac{\rho}{m}$
- ρ : local DM mass density

The differential event rate

$$\frac{dR}{dE} = \frac{\rho}{m} \frac{1}{M} \int_{v > v_m} d^3 v \, \frac{d\sigma}{dE} \, v \, f(\mathbf{v})$$

- Many unknowns enter the event rate:
 - DM mass
 - Local DM density
 - Local DM velocity distribution
 - DM-nucleus cross section

The differential event rate

Exclusion limit

Mass

Direct detection techniques

- The majority of direct detection experiments are *directioninsensitive*, and they measure the recoil energy of the nucleus.
- Signals in direct detection experiments:
 - phonons (heat)
 - scintillation (light)
 - ionization (charge)

- Different types of detectors:
 - crystalline detectors operating at very low temperatures (mK), crystals at room temperature, noble liquid detectors, ...

Direct detection techniques

Indirect dark matter detection

Two key-assumptions:

 Dark matter exists and is the main responsible for the gravitational potential inferred in galaxies, clusters and cosmo.
 Dark matter is non-gravitationally coupled to standard matter.

DM annihilation/ decay leads to production of **observable fluxes** of stable particles.

Indirect dark matter detection

RADIO

1000 km

100 km

INFRARED

OPTICAL

ULTRAVIOLET

Dark matter signals

Annihilation

Velocity averaged DM annihilation cross-section

$$\frac{dN_{\text{ann}}}{dA \, dt \, d\Omega \, dE} = \frac{\langle \sigma v \rangle}{2m_{\chi}^2} \frac{dN_x}{dE} \frac{1}{4\pi} J_{\text{ann}}(\psi)$$
DM mass $\int \int DM$ spectrum
$$J_{\text{ann}}(\psi) = \int_{\log} \rho^2(\psi, l) dl$$
DM spatial profile

Decay

$$\frac{dN_{\text{dec}}}{dA\,dt\,d\Omega\,dE} = \frac{1}{m_{\chi}\,\tau} \frac{dN_{x}}{dE} \frac{1}{4\pi} J_{\text{dec}}(\psi)$$

DM decay rate
$$\int J_{\text{dec}}(\psi) = \int_{\log} \rho(\psi, l) dl$$

Reviews: Bringmann & Weniger, PDU'15; Ibarra+, Int. J. of Modern Physics A'13

Advertisement

PInternational Centre for Theoretical PhysicsRSouth American Institute for Fundamental Research

São Paulo (not Rio!), Brazil

School on DM and neutrinos July 23-August 3, 2018

http://www.ictp-saifr.org/school-on-dark-matterand-neutrino-detection/

Alright: Google it

Advertisement

PInternational Centre for Theoretical PhysicsRSouth American Institute for Fundamental Research

São Paulo (not Rio!), Brazil

• Second South American DM workshop November 21-23, 2018

http://www.ictp-saifr.org/DMw2018