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The standard cosmological model

The Einstein-Hilbert action can be written as:

S = − 1

16πG

∫

d4x
√−g(R+ 2Λ) + SM (1)

which results in Einstein’s equations with cosmological constant

Rµν −
1

2
gµνR− Λgµν = 8πGTµν (2)

The Friedmann Equations are:

ȧ2

a2
+

k

a2
=

8πGρ

3
+

Λ

3
(3)

and
ä

a
=

4πG

3
(ρ+ 3p) +

Λ

3
(4)

For the cosmological constant pΛ = −ρΛ = − Λ
8πG and ωΛ = pΛ

ρΛ
= −1
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Dark energy

The effect of dark energy on the expansion rate can be described by:

Ωde ≡
ρde,0
ρcrit,0

; w ≡ pde
ρde

. (5)

where ρcrit ≡ 3H2/(8πG) Using the continuity equation for an arbitrary
equation of state we can write:

ρde(z) = ρde,0 exp

[

3

∫ z

0

1 + w(z′)

1 + z′
dz′

]

(6)

The expansion rate of the universe H ≡ ȧ/a can then be written as

H2(z) = H2
0

[

Ωm(1 + z)3 +Ωr(1 + z)4 (7)

+ Ωde(1 + z)3(1+w) +Ωk(1 + z)2
]

,

where H0 is the Hubble constant, Ωm and Ωr are the matter and
radiation energy densities relative to the critical density.
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Energy densities in the Universe

Figure: The shaded region for dark energy indicates the energy densities allowed
by combined constraints on current data assuming ω(a) = ω0 + ωa (1− a).
Huterer & Shafer RPP 81, 016901 (2018)
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Reconstructed equation of state

ω = ω0 + ωa(1− a) = ωa
z
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Figure: Planck Collaboration A&A 594, A14 (2016)
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Dark energy and geometry

The comoving distance can be written compactly as

r(z) = lim
Ω′

k
→Ωk

c

H0

√

Ω′

k

sinh

[

√

Ω′

k

∫ z

0

H0

H(z′)
dz′

]

, (8)

The luminosity distance dL is the distance at which an object with a
certain luminosity produces a certain flux (f = L/4πd2L):

dL(z) = (1 + z) r(z) (9)

The angular diameter distance dA is the distance at which a certain
physical separation xtrans produces a certain angle on the sky
(θ = xtrans/dA)

dA(z) =
1

1 + z
r(z) (10)

Landau (IFIBA) Non standard cosmology LAPIS 2018 - April 2018 8 / 65



Comoving distance
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Figure: Black Line: ΛCDM model with Ωm = 0.3, Blue line: ΛCDM model with
Ωm = 0.25, Red line: Ωm = 0.3 and ω = −0.8, Black dashed line: EdS. Huterer
& Shafer RPP 81, 016901 (2018)
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Dark energy and growth of matter

fluctuations

Asuming δ ≡ δρm/ρm << 1 on lenght scales much smaller than the
Hubble radius: the temporal evolution of the fluctuation can be written as:

δ̈k + 2Hδ̇k − 4πGρmδk = 0 , (11)

where δk is the Fourier component corresponding to the mode with
wavenumber k ≃ 2π/λ. Let us define de growth suppresion factor g(a) as
follows:

D(a) ≡ δ(a)

δ(1)
≡ a g(a)

g(1)
. (12)
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Growth Suppression
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Figure: Huterer & Shafer RPP 81, 016901 (2018)
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Type Ia supernovae

We recall the definition of luminosity distance dL(z):

dL =

√

L

4πf
(13)

where L is the observed luminosity and f the observed flux. The
observational quantity can be written as:

mi −M = 5 log10

(

dL
10 pc

)

, (14)

mi + αsi − βCi −M = 5 log10

(

dL
10 pc

)

, (15)

where mi, si and Ci are the observed peak magnitude, stretch and color
respectively andα, β and M are the nuissance parameters.
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Baryon Acoustic Oscillations

The sound horizon can be computed as the comoving distance that the
sound waves could travel from the Big Bang until recombination:

rs =

∫ t∗

0

cs
a(t)

dt =
c√
3

∫ a∗

0

da

a2H(a)
√

1 + 3Ωb

4Ωγ
a

(16)

where a∗ ∼ 10−3 is the scale factor at recombination. The galaxy
correlation function can be expressed as:

ξ(s) =

〈

δρ

ρ
(x1)

δρ

ρ
(x2)

〉

where ρ and δρ are the mean density and perturbation of matter and 〈...〉
is the mean such that que |x1 − x2| = s.
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Correlation function vs comoving separation

Figure: Eisenstein & Bennet Physics Today 61, 44 (2008)
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Baryon Acoustic Oscillations

The BAO method measures the cosmic distance scale using the acoustic
length scale rs as a standard ruler.
Separations along the line of sight correspond to differences in redshift

∆zs =
H(z) rs

c
. (17)

Separations transverse to the line of sight correspond to differences in
angle

∆θs =
rs

dA(z)
. (18)

Up until recently, the BAO measurements had sufficiently large statistical
error that it was a good approximation to constrain:

DV (z)≡

[

(1 + z)2dA(z)
cz

H(z)

]1/3

. (19)
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Cosmic Microwave Background

Dark energy affects the distance to the epoch of recombination, and
therefore the angular scale at which the CMB fluctuations are observed.
The sound horizon rs is projected to angle

θ∗ =
rs(z∗)

r(z∗)
, (20)

where z∗ is the recombination redshift and r is the comoving distance.
The CMB essentially constrains the comoving distance to recombination
with the physical matter density ΩmH2

0 fixed :

R ≡
√

ΩmH2
0 r(z∗) , (21)

The CMB probes a different combination of dark energy parameters than
Supernovae or BAO.
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Anisotropy of the temperature in the CMB
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Figure: Huterer & Shafer RPP 81, 016901 (2018)
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Galaxy Clusters

The number of halos in redshift interval [z, z + dz] is given by:

dN

dz
(z) =

∫

4π

dV

dzdΩ
(z)

∫

∞

0
dM

dn(M, z)

dM
S(M, z) , (22)

dV
dzdΩ(z) =

r2(z)
H(z) is the comoving volume element

n(M, z) is the galaxy clusters mass function

S(M, z) is the selection function of the survey

Important concern: how to relate the observable quantity to the
mass of the cluster

Landau (IFIBA) Non standard cosmology LAPIS 2018 - April 2018 18 / 65



Predicted cluster counts for a survey
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Figure: Huterer & Shafer RPP 81, 016901 (2018)
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Weak Lensing

Gravitational lensing produces distortions of images of background
galaxies. These distortions can be described as mapping between the
source plane (S) and image plane (I),

δxSi = Aijδx
I
j , (23)

where δx are the displacement vectors in the two planes and A is the
distortion matrix,

A =

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

. (24)

The deformation is described by the convergence κ and complex shear
(γ1, γ2); the total shear is defined as |γ| =

√

γ21 + γ22 .
Given a sample of sources with known redshift distribution and
cosmological parameter values, the convergence and shear can be
predicted from theory.
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Weak Lensing

The convergence can be transformed into multipole space
κlm =

∫

dn̂κ(n̂, χ)Y ∗

lm(n̂), and the power spectrum is defined as the
two-point correlation function 〈κℓmκℓ′m′〉 = δℓℓ′ δmm′ P κ

ℓ . The
convergence angular power spectrum is

P κ
ℓ (zs) =

∫ zs

0

dz

H(z)d2A(z)
W (z)2P

(

k =
ℓ

dA(z)
; z

)

, (25)

where ℓ denotes the angular multipole, dA(z) is the angular diameter
distance, the weight function W (z) is the efficiency for lensing a
population of source galaxies and is determined by the distance
distributions of the source and lens galaxies, and P (k, z) is the usual
matter power spectrum.
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Angular power spectrum of cosmic shear

100 1000 10000

Multipole l

10
-6

10
-5

10
-4

l(
l+

1
) 

P
! l /

 (
2
"

)

first bin

second bin

Solid: w=-1.0

Dashed: w=-0.9

cross term

Figure: 0 < zs < 1 (first bin) and 1 < zs < 3 (second bin) Huterer & Shafer
RPP 81, 016901 (2018)
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Cosmological tests of dark energy

Probe/Method Strengths Weaknesses

SN Ia pure geometry, calibration,
model-independent, evolution,

mature dust extinction

BAO pure geometry, requires millions
low systematics of spectra

CMB breaks degeneracy, single distance
precise, only

low systematics

Weak lensing growth & geometry, measuring shapes,
no bias photometric-z biases

Cluster counts growth & geometry, mass-observable,
X-ray, SZ, & optical selection function
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Constraints on ω

Figure: Huterer & Shafer RPP 81, 016901 (2018)
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Constraints on ω

Figure: De Haan et al ApJ 832, 95 (2016).
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Constraints on ω

ω = ω0 + ωa(1− a) = ωa
z

1 + z
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Constraints on ω

ω = ω0 + ωa(1− a) = ωa
z
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Reconstructed equation of state

ω = ω0 + ωa(1− a) = ωa
z

1 + z
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Figure: Planck Collaboration A&A 594, A14 (2016)
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Problem of the standard cosmological model

The two problems discussed in the literature can be summarized as follows:

Fine-Tunning: A big discrepancy between the value of Λ inferred from
cosmological observations and the one inferred from thereotical
calculations using Quantum Field Theory .

◮ The vaccum energy estimated from QFT yieds:

ρvac ≃ 1074 GeV4

while cosmological observations give the following value

ρ
(0)
DE ≃ 10−47 GeV4

Cosmic Coincidence: Why is ρm ∼ ρΛ today ?
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Quintessence models

The action of quintessence is described by

S =

∫

d4x
√−g

[

1

2κ2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]

+ SM , (26)

where R is a Ricci scalar, and φ is a scalar field with a potential V (φ).
The continuity equation, ρ̇φ + 3H(ρφ + Pφ) = 0, translates to the
equation of motion of the fiels as follows:

φ̈+ 3Hφ̇+ dV/dφ = 0 , (27)

The field equation of state is given by

wφ ≡ Pφ

ρφ
=

φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (28)
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Quintessence models

From the Einstein equations the following equations can be obtained

H2 =
κ2

3

[

1

2
φ̇2 + V (φ) + ρm + ρr

]

, (29)

Ḣ = −κ2

2

(

φ̇2 + ρm +
4

3
ρr

)

. (30)

Quintessence DE is completely characterized by its equation of state ω(t).
Dark Energy physics beyond a canonical scalar field can be probed by
searching for an inconsistency between geometry H(z) and growth δ(k; z)
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Classification of quintessence models

The differential equations for w and Ωφ are:

ω′

φ = (ωφ − 1)[3(1 + ωφ)− λ
√

3(1 + ωφ)Ωφ] , (31)

Ω′

φ = −3(ωφ − ωm)Ωφ(1− Ωφ) , (32)

where a prime represents a derivative with respect to N = ln a.
We will discuss three different cases

Freezing models: The evolution of the field gradually slows down
because the potential tends to be shalow at late times.

◮ Tracker models
◮ Scaling models

Thawing models: The field is nearly frozen during the early
cosmological epoch and its starts to evolve once mφ < H.
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Tracker models

If
Γ ≡ V V,φφ/V

2
,φ > 1

and nearly constant the solution is called a tracker, along which Ωφ

increases and hence ωφ < ωm and nearly constant:

ωφ =
ωm − 2 (Γ− 1)

2Γ− 1
(33)

For example, let us consider the inverse power-law potential introduced by
Steinhard, Wang and Zlatex PRD 59 123504 (1999)

V (φ) = M4+pφ−p , (34)

A particular case of the latter is the one studied by Ferreira & Joyce
PRL 79 4740 (1997)

V (φ) = M5φ−1

.
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ω(a) for a tracker potential
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Figure: V (φ) = M5φ−1 S.Tsujikawa CQG 30 214003 (2013)
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Bounds on tracker models from observations

From the joint data analysis of Supernovae (Union2.1), CMB (WMAP7)
and BAO (BOSS) data, the tracker equation of state during the matter
era is constrained to be with (95% CL)

ω(z = 0) < −0.964

under the prior ω(z = 0) > −1 (Chiba et al 2013). For the potential
V (φ) = M4+pφ−p this bound translates into p < 0.075. However, Chiba
et al 2013 find that the best-fit corresponds to ω = −1, i.e., the ΛCDM
model.
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Scaling models

Ferreira & Joyce 1997 proposed

V (φ) = V0e
−λφ

MPl

but this model has some theoretical problems and also can not give a
good fit to the observational data. These problems can be alleviated by
considering the proposal of Barreiro, Copeland and Nunes PRD 62
127301 (2000)

V (φ) = V1e
−λ1φ/Mpl + V2e

−λ2φ/Mpl ,

The variation of ωφ can be expressed:

ωφ(a) = ωf +
ωp − ωf

1 + (a/at)1/τ
,

where ωp and ωf are asymptotic values of ωφ in the past and future
respectively, at is the scale factor at the transition between the
matter-dominated era and the cosmic acceleration phase, and τ describes
the transition width.
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ω(a) for a scaling potential
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Figure: The solid line shows the field equation of state for λ1 = 20, λ2 = 0.5,
while the dashed line shows the case (b) λ1 = 20, λ2 = −20, Ωφ = 0.7.
S.Tsujikawa CQG 30 214003 (2013)
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Constraints on scaling models

The joint analysis of Supernovae (Union2.1), CMB (WMAP7) and BAO
(SDSS7 and BOSS) data with τ = 0.33 yields the following constraints:

at < 0.23 λ1 > 11.7 λ2 < 0.539
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Thawing models

An example of these class of models is:

V (φ) = µ4 [1 + cos(φ/fa)] ,

where µ and fa are constants having a dimension of mass. For these kind
of models the equation of state is:

w(a) = −1 + (1 + w0)a
3(K−1)F(a) ,

where

F(a) =





(K − F (a))(F (a) + 1)K + (K + F (a))(F (a)− 1)K

(K − Ω
−1/2
φ0 )(Ω

−1/2
φ0 + 1)K + (K +Ω

−1/2
φ0 )(Ω

−1/2
φ0 − 1)K





2

.

and

K ≡

√

1− 4

3

M2
plV,φφ(φi)

V (φi)
, F (a) ≡

√

1 + [(Ωφ0)−1 − 1]a−3 ,
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ω(a) for a thawing potential
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Figure: The field equation of state w with (a) fa/Mpl = 0.5, φi/fa = 0.5
(K = 1.9), (b) fa/Mpl = 0.3, φi/fa = 0.25 (K = 2.9), and (c) fa/Mpl = 0.1,
φi/fa = 7.6× 10−4 (K = 8.2). Ωφ0 = 0.73. S.Tsujikawa CQG 30 214003 (2013)
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Allowed region for Freezing and Scaling

models

Figure: S.Tsujikawa Astrophysics and Space Science Library 370 p. 331(2011)
arXiv:1004.1493
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Quintessence parametrized models

Acoording to Huang et al 2011 we can parametrize ω at late times:

w = −1 +
2

3
ǫSF

2

(

a

ade

)

, (35)

where ǫS is defined as:
ǫS ≡ ǫV |a=ade

, (36)

with ǫV ≡ (d lnV
dφ )2M2

pl/2 being a function of the slope of the potential,
ade is the scale factor where the total matter and DE densities are equal.
The function F (x) is defined as:

F (x) ≡
√
1 + x3

x3/2
−

ln
(

x3/2 +
√
1 + x3

)

x3
. (37)

Eq.35 is only valid for late-Universe slow-roll (ǫV . 1 and
ηV ≡ M2

plV
′′/V << 1) or the moderate-roll (ǫV . 1 and ηV . 1) regime.
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Constraints on parametrized quintessence

models
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Figure: Planck Collaboration A&A 594, A14 (2016)
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Quintessence parametrized models

For quintessence models, where the scalar field rolls down from a very
steep potential, at early times ǫV (a) ≫ 1, however the fractional density
Ωφ(a) → 0 and the combination ǫV (a)Ωφ(a) aprroaches a constant,
defined to be a second parameter:

ǫ∞ ≡ lim
a→0

ǫV (a)Ωφ(a) (38)

While ǫS is sensitive to the late time evolution of 1 + ω(a), ǫ∞ captures
its early time behaviour.
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Constraints on parametrized quintessence

models
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K-essence models

The full action including a k-essence term is given by (Armendariz-Picon
2000)

S =

∫

d4x
√−g

[

− 1

16πG
R+ p(φ,X)

]

+ SM , (39)

where X ≡ 1
2(∇φ)2 is the canonical kinetic energy of the field, and

p(φ,X) plays a role of the pressure pK . Here we consider a model with

pK = p(φ,X) = p̃(X)/φ2, (40)

which has the desired property for dark energy. For small X, p̃(X) could
be expanded as p̃(X) = const.+X +O(X2). If we ignore the non-linear
term O(X2) and take an additional potential, then we come back to the
quintessence model. The scalar field for which these higher order
kinetic energy terms play an essential role is k-essence.
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K-essence models

The energy density of the k-field is

ρK = (2Xp̃,X − p̃)/φ2 ≡ ρ̃/φ2 (41)

so that the equation of state parameter for the k-field is:

ωK ≡ pK
ρK

=
p̃

ρ̃
=

p̃

2Xp̃,X − p̃
(42)

If p satisfies the condition Xp,X ≪ p for some range of X and φ, then
the equation of state is p ≈ −ρ. The effective speed of sound cs of
k-essence is defined by:

c2s =
p,X
ρ,X

=
p̃,X
ρ̃,X

. (43)
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K-essence models

The Friedmann equations for a flat FRW space-time :

H2 ≡ Ṅ2 =
8πG

3
(ρM + ρK), N ≡ ln a. (44)

Using the energy conservation equation and considering a homogeneous
field φ, we get

dX

dN
= − ρ̃

ρ̃,X

[

3(1 + ωK)− 2φ−1

√
2X

H

]

. (45)

Remember that X ≡ 1
2(∇φ)2.
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K-essence models

It is usual to use a new variable y ≡ 1/
√
X. The equation of state and

speed of sound in terms of the new variable:

ωK = −g/(yg′) c2s =
p′K
ρ′K

=
g − g′y

g′′y2
, (46)

Using this new variable, the stability conditions can be expressed as
g′ < 0 and g′′ > 0 so that g is a decreasing convex function of y. The
equation of motion for the k-field,

dy

dN
=

3

2

(ωK(y)− 1)

r′(y)

[

r(y)−
√

ρK
ρtot

]

, (47)

where

r(y) ≡
(

−9

8
g′
)1/2

y(1 + ωK) =
3

2
√
2

(g − g′y)√
−g′

. (48)
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k-essence atractor solutions

The attractor solutions for k-essence are classified into two types:

a tracker solution in which k-essence mimics the equation of state of
the background component in the Universe

k-essence is attracted to an equation of state which is different from
matter or radiation.

For all types of attractors there is a set of initial conditions which
evolve towards the attractor.
We want to have a tracker solution y(N) which satisfies:

ωK(ytr) = − g

yg′
|y=ytr = ωM (49)

The point ytr that satisfies those conditions is the so-called attractor
solution. In order to get an atractor solution we need that:

r2(ytr) =
ρK
ρtot

< 1, (50)

in the range of r(y) > 1 there is no attractor solution.
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k-essence atractor solutions

Trackers
◮ Radiation Trackers : ωK(ytr) = ωr = 1

3
◮ Dust Trackers : ωK(ytr) = ωm = 0

Atractors
◮ De-Sitter atractors: ωK(ytr) = −1
◮ K-atractors: ωK(ytr) < 0
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k-essence models

There are two possible scenarios: In both of them, first the k-essence field
is attracted to y = yR in the radiation dominated epoch. The, at matter
dominated epoch, ρK drops sharply by several orders of magnitude

The k-essence field is not atracted to the dust atractor during the
matter dominated era. In the following the field is atracted to y ≈ yS ,
ρK freezes and overtakes ρm. And then y relaxes towards yK . In this
scenario, our current Universe lies on the transition from yS to yK .

After matter domination, the k-essence approaches first the
S-attractor, freezes for a finite time, is attracted towards the dust
attractor, and the Universe decelerates its expansion. This scenario is
called late dust tracker because the dust attractor is reached long
after the matter domination has begun.
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Ratio of k-essence to matter energy density
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Figure: Left: Model with a k-atractor; Right: Model with a late dust tracker
solution; Armendariz-Picon, Mukhanov & Steinhardt PRD 63, 103510 (2001)
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Equation of state vs redshift
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Figure: Left: Model with a k-atractor; Right: Model with a late dust tracker
solution; Armendariz-Picon, Mukhanov & Steinhardt PRD 63, 103510 (2001)
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k-essence models

Low energy efective string theory

The action of low energy effective string theory in the presence of a
higher-order derivative term (∇̃φ)4 is given by

S =
1

2κ2

∫

d4x̃
√

−g̃
[

F (φ)R̃+ ω(φ)(∇̃φ)2 + α′B(φ)(∇̃φ)4 +O(α′2)
]

,

(51)
Under a conformal transformation, gµν = F (φ)g̃µν , we obtain the action
in the Einstein frame:

SE =

∫

d4x
√−g

[

1

2κ2
R+K(φ)X + L(φ)X2 + · · ·

]

, (52)
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k-essence models

Ghost condensate

Let us consider the ghost condensate model characterized by the
Lagrangian:

P = −X +X2/M4 , (53)

where M is a constant. A more general version of this model, called the
dilatonic ghost condensate is:

P = −X + eκλφX2/M4 , (54)

which is motivated by a dilatonic higher-order correction to the tree-level
action.
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k-essence models

Tachyon

A tachyon field appears as an unstable mode of D-branes. The effective
4-dimensional Lagrangian is given by :

P = −V (φ)
√
1− 2X , (55)

where V (φ) is a potential of the tachyon field φ. It can be used for dark
energy provided that the potential is shallower than V (φ) = V0φ

−2.
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k-essence models

Dirac-Born-Infeld (DBI) theory

The field dynamics can be described by the DBI action for a probe
D3-brane moving in a radial direction of the Anti de Sitter (AdS)
space-time. The Lagrangian density with the field potential V (φ) is given
by

P = −f(φ)−1
√

1− 2f(φ)X + f(φ)−1 − V (φ) , (56)

where f(φ) is a warped factor of the AdS throat.
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Quintessence vs k-essence

In both models the cosmic evolution is insensitive to initial conditions
because the field is attracted to the attractor solution wherever it
started.

In both models the the coincidence problem is solved by explaining
why the cosmic acceleration is started at such a late stage shortly
after the onset of the matter dominated phase.

Neither quintessence nor k-essence solve the vacuum energy problem.

For the tracker solution, the quintessence field tracks the radiation
and matter background, and needs a potential energy fine-tuning at
the quintessence-matter crossover stage.

The k-essence field tracks only the radiation background (for no
D-attractor scenario), and does not need a potential energy term thus
it is free from fine-tuning that arose in quintessence.
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Coupled dark energy and dark matter

The interaction between dark matter and dark energy is described by
following modified energy conservation equations

ρ̇m + 3H(ρm) = δ, (57)

ρ̇φ + 3H(ρφ + pφ) = −δ, (58)

where δ is an energy exchange term in the dark sector. There are two
major examples:

δ = κQρmφ̇, (59)

δ = αH(ρm + ρφ), (60)

where Q and α are dimensionless constants.
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Coupled dark energy and dark matter

The first case corresponds to a potential:

V (φ) = V0e
−κλφ. (61)

The coupled quintessence scalar field equation is

φ̈+ 3Hφ̇+ V,φ = −κQρm, (62)

In the second case the interaction potential and coupling structure are
determined from the requirement ρm

ρφ
= const. .

The coupling equation is equivalent to:

φ̇
[

φ̈+ 3Hφ̇+ V,φ

]

= −δ, (63)
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Coupled dark energy and dark matter

For example the model developed by L.Chimento and collaborators:

ρ′m + γmρm = −Q, ρ′x + γxρx = Q. (64)

The equation for the energy density ρ of the dark sector:

ρ′′ + (γm + γx)ρ
′ + γmγxρ = Q(γm − γx). (65)

Here, the nonlinear interaction Q between both dark components is
Q = αρ′ρ, with α being the coupling constant.
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Results for coupled models
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Figure: L.Chimento et al. PRD 88 087301 (2013)
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Summary

Cosmological probes for Dark Energy
◮ Supernovae Type Ia
◮ Baryon Acoustic Oscillations
◮ Cosmic Microwave Background
◮ Galaxy Clusters
◮ Weak Lensing

Theoretical Models
◮ Quintessence Models
◮ k-essence models
◮ Coupled dark energy and dark matter
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Thank you !!! Obrigado !!! Gracias!!!
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