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We live in the aftermath of a Big Bang
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Relics from the early stages of the HBB



The growth of structure
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where the linear growth factor g(z) is approximately
given by [61]
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Here the parameters Ωz
m and Ωz

Λ are those at redshift
z, given by the present values Ωm and ΩΛ through the
relations

Ωz
m =

[

H0

H(z)

]2

Ωm(1 + z)3, (12)

Ωz
Λ =

[

H0

H(z)

]2

ΩΛ, (13)

with H(z) given by equation (5).
The power spectrum Pnl

δ (k) needed in equation (3) is
the nonlinear one rather than the linear one P l

δ(k) given
by equation (10). Based on a pioneering idea of Hamilton
et al. [62], a series of approximations [59,63–65] have been
developed for approximating the former using the latter.
In terms of the dimensionless power

∆2(k) ≡
4π

(2π)3
k3Pδ(k), (14)

the linear power ∆l on scale kl is approximately related
to the nonlinear power ∆nl on a smaller nonlinear scale
knl. We use the Peacock & Dodds’ approximation [65],
where this mapping is given by

∆2
nl(knl) = fnl

[

∆2
l (kl)

]

(15)

and

kl =
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nl(knl)

]−1/3
knl, (16)

with a fitting function
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parametrized by

A = 0.482(1 + neff/3)−0.947, (18)

B = 0.226(1 + neff/3)−1.778, (19)

α = 3.310(1 + neff/3)−0.224, (20)

β = 0.862(1 + neff/3)−0.287, (21)

V = 11.55(1 + neff/3)−0.423. (22)

Here g(0) is the linear growth factor of equation (11)
evaluated at z = 0 and neff ≡ d lnP l

δ(k)/d ln kl is the
effective logarithmic slope of the linear power spectrum
evaluated at kl. Since this slope should be evaluated
for a model without baryonic wiggles, we compute neff

using an the Eisenstein & Hu fitting function with baryon
oscillations turned off.

III. EXPERIMENTAL DATA USED

A. CMB data

Figure 1 shows the 135 CMB measurements which are
used in our analysis. Compared to the data set we used
in [30], we add the new measurements from the Cosmic
Background Imager (CBI) mosaic [66], the Very Small
Array (VSA) [67] and Archeops [68]. For CBI, we use the
year 2000 observations of three pairs of mosaic fields [66]
but not the deep fields, because it is still unclear whether
their signal is dominated by CMB or other effects such
as SZ effect [69]. The Boomerang results updated last
week [70] and the Acbar results [71] became available too
recently for inclusion in this analysis, but we do include
them in the online combined power spectrum described
below.

FIG. 1. CMB data used in our analysis. Error bars do not

include calibration or beam errors which allow substantial vertical

shifting and tilting for some experiments (these effects are included

in our analysis).

We combine these measurements into a single set of 28
band powers shown in Figure 2 and Table 1 using the
method of [30] as improved in [31], including calibration
and beam uncertainties, which effectively calibrates the
experiments against each other. Since our compressed
band powers dℓ are simply linear combinations of the
original measurements, they can be analyzed ignoring the
details of how they were constructed, being completely
characterized by a window matrix W:

⟨di⟩ =
∑

ℓ

WiℓδT
2
ℓ , (23)

where δT 2
ℓ ≡ ℓ(ℓ + 1)Cℓ/2π is the angular power spec-

trum. This matrix is available at
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www.hep.upenn.edu/∼max/cmb/cmblsslens.html
together with the 28 band powers dℓ and their 28×28 co-
variance matrix. The data ℓ-values and effective ℓ-ranges
in Figure 2 and Table 1 correspond to the median, 20th
and 80th percentile of the window functions W. Com-
paring Table 1 with the older results from [31], we find
that the only major change is a shallower rise towards
the 1st peak due to Archeops, which is able to help cal-
ibrate Boomerang and other small-scale experiments by
connecting them with the COBE. Specifically, δTℓ has
increased by about 10% at ℓ ∼ 50 and decreased about
5% for ℓ ∼ 100 − 200, thereby nudging the first peak a
tad to the right.

FIG. 2. Combination of data from Figure 1. These error bars

include the effects of beam and calibration uncertainties, which

cause long-range correlations of order 10% over the peaks. In addi-

tion, points tend to be anti-correlated with their nearest neighbors,

typically at the level of 10-20%. The curve shows our model best

fitting CMB+LSS data (second last column in Table 2).

Table 1 – Band powers combining the information from CMB data
from Figure 1. The 1st column gives the ℓ-bins used when com-
bining the data, and can be ignored when interpreting the results.
The 2nd column gives the medians and characteristic widths of the
window functions as detailed in the text. The error bars in the
3rd column include the effects of calibration and beam uncertainty.
The full 28×28 correlation matrix and 28×2000 window matrix are
available at www.hep.upenn.edu/ ∼ max/cmb/cmblsslens.html.

ℓ-Band ℓ-window δT 2 [µK2]

2 − 2 2+0
−0 49 ± 310

3 − 5 4+3
−1

877 ± 308

6 − 10 8+3
−2

782 ± 218

11 − 30 16+9
−4 832 ± 151

31 − 50 40+10
−10 1113 ± 244

51 − 75 60+14
−13

1120 ± 255

76 − 100 87+10
−12 2139 ± 279

101 − 125 110+11
−17 2767 ± 340

126 − 150 135+12
−14

3461 ± 443

151 − 175 161+21
−23 4122 ± 529

176 − 225 196+24
−34 4900 ± 410

226 − 275 246+23
−44

5079 ± 441

276 − 325 297+24
−28 3164 ± 359

326 − 375 348+22
−23 1892 ± 265

376 − 425 398+20
−22

1468 ± 213

426 − 475 450+21
−22 1793 ± 219

476 − 525 499+21
−22 2037 ± 257

526 − 575 549+21
−23

2306 ± 268

576 − 625 600+21
−22 1932 ± 267

626 − 675 649+21
−22 1790 ± 259

676 − 725 700+20
−21

1948 ± 293

726 − 775 749+22
−23

1428 ± 334

776 − 825 801+23
−23 2322 ± 438

826 − 1000 888+52
−46

2067 ± 261

1001 − 1200 1093+56
−65

953 ± 300

1201 − 1400 1299+54
−55 638 ± 291

1401 − 1600 1501+54
−55

924 ± 368

1601 −∞ 1700+51
−53

189 ± 273

B. LSS data

Measurements of P (k) from Galaxy redshift surveys
have recently improved in both quality and quantity, and
the Sloan Digital Sky Survey is set to continue this trend.
In this paper, we use the power spectrum from the 2dF-
GRS [72] as measured by [73]. We model the galaxy bias
as a scale-independent constant b, and therefore discard
all 2dF measurements with k ≥ 0.3h/Mpc to minimize
our sensitivity to nonlinear clustering and nonlinear bias
effects.

4

as
tro

-p
h/

95
02

03
0 

  6
 F

eb
 1

99
5

12

Fig. 5.— The SPT bandpowers, WMAP bandpowers, and best-fit ⇤CDM theory spectrum shown with dashed (CMB) and solid
(CMB+foregrounds) lines. The bandpower errors do not include beam or calibration uncertainties.

Fig. 6.— The one-dimensional marginalized constraints on the six cosmological parameters in the baseline model. The constraints from
SPT+WMAP are shown by the blue solid lines, while the constraints from WMAP alone are shown by the orange dashed lines.

– 37 –

Fig. 8.— The final angular power spectrum, l(l + 1)Cl/2π, obtained from the 28 cross-power spectra,
as described in §5. The data are plotted with 1σ measurement errors only which reflect the combined
uncertainty due to noise, beam, calibration, and source subtraction uncertainties. The solid line shows the
best-fit ΛCDM model from Spergel et al. (2003). The grey band around the model is the 1σ uncertainty
due to cosmic variance on the cut sky. For this plot, both the model and the error band have been binned
with the same boundaries as the data, but they have been plotted as a splined curve to guide the eye. On
the scale of this plot the unbinned model curve would be virtually indistinguishable from the binned curve
except in the vicinity of the third peak.

Planck Collaboration: Cosmological parameters

Fig. 10. Planck TT power spectrum. The points in the upper panel show the maximum-likelihood estimates of the primary CMB
spectrum computed as described in the text for the best-fit foreground and nuisance parameters of the Planck+WP+highL fit listed
in Table 5. The red line shows the best-fit base ⇤CDM spectrum. The lower panel shows the residuals with respect to the theoretical
model. The error bars are computed from the full covariance matrix, appropriately weighted across each band (see Eqs. 36a and
36b) and include beam uncertainties and uncertainties in the foreground model parameters.

Fig. 11. Planck T E (left) and EE spectra (right) computed as described in the text. The red lines show the polarization spectra from
the base ⇤CDM Planck+WP+highL model, which is fitted to the TT data only.

25

COBE Ground/Balloon (pre-WMAP)

WMAP

Ground/(pre-Planck)



Agreement between theory and dataPlanck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is

8
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Fig. 3. Frequency-averaged T E and EE spectra (without fitting for T -P leakage). The theoretical T E and EE spectra plotted in the
upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with respect to this theoretical
model are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the
best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and EE spectra.
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Fig. 11. Planck measurements of the lensing power spectrum compared to the prediction for the best-fitting base⇤CDM model to the
Planck TT+lowP data. Left: the conservative cut of the Planck lensing data used throughout this paper, covering the multipole range
40  `  400. Right: lensing data over the range 8  `  2048, demonstrating the general consistency with the ⇤CDM prediction
over this extended multipole range. In both cases, green points are the power from lensing reconstructions using only temperature
data, while blue points combine temperature and polarization. They are o↵set in ` for clarity. Error bars are ±1�. In the top panels
the solid lines are the best-fitting base⇤CDM model to the Planck TT+lowP data with no renormalization or �N(1) correction applied
(see text). The bottom panels show the di↵erence between the data and the renormalized and �N(1)-corrected theory bandpowers,
which enter the likelihood. The mild preference of the lensing measurements for lower lensing power around ` = 200 pulls the
theoretical prediction for C��` downwards at the best-fitting parameters of a fit to the combined Planck TT+lowP+lensing data,
shown by the dashed blue lines (always for the conservative cut of the lensing data, including polarization).

• Beam uncertainties are no longer included in the covariance
matrix of the C��` , since, with the improved knowledge of the
beams, the estimated uncertainties are negligible for the lens-
ing analysis. The only inter-bandpower correlations included
in the C��` bandpower covariance matrix are from the uncer-
tainty in the correction applied for the point-source 4-point
function.

As in the 2013 analysis, we approximate the lensing likelihood
as Gaussian in the estimated bandpowers, with a fiducial co-
variance matrix. Following the arguments in Schmittfull et al.
(2013), it is a good approximation to ignore correlations between
the 2- and 4-point functions; so, when combining the Planck
power spectra with Planck lensing, we simply multiply their re-
spective likelihoods.

It is also worth noting that the changes in absolute calibra-
tion of the Planck power spectra (around 2 % between the 2013
and 2015 releases) do not directly a↵ect the lensing results. The
CMB 4-point functions do, of course, respond to any recalibra-
tion of the data, but in estimating C��` this dependence is re-
moved by normalizing with theory spectra fit to the observed
CMB spectra. The measured C��` bandpowers from the 2013 and
current Planck releases can therefore be directly compared, and
are in good agreement (Planck Collaboration XV 2015). Care is
needed, however, in comparing consistency of the lensing mea-
surements across data releases with the best-fitting model pre-
dictions. Changes in calibration translate directly into changes
in Ase�2⌧, which, along with any change in the best-fitting opti-
cal depth, alter As, and hence the predicted lensing power. These
changes from 2013 to the current release go in opposite direc-
tions leading to a net decrease in As of 0.6 %. This, combined
with a small (0.15 %) increase in ✓eq, reduces the expected C��`
by approximately 1.5 % for multipoles ` > 60.

The Planck measurements of C��` , based on the temperature
and polarization 4-point functions, are plotted in Fig. 11 (with
results of a temperature-only reconstruction included for com-
parison). The measured C��` are compared with the predicted
lensing power from the best-fitting base ⇤CDM model to the
Planck TT+lowP data in this figure. The bandpowers that are
used in the conservative lensing likelihood adopted in this pa-
per are shown in the left-hand plot, while bandpowers over the
range 8  `  2048 are shown in the right-hand plot, to demon-
strate the general consistency with the ⇤CDM prediction over
the full multipole range. The di↵erence between the measured
bandpowers and the best-fit prediction are shown in the bottom
panels. Here, the theory predictions are corrected in the same
way as they are in the likelihood15.

Figure 11 suggests that the Planck measurements of C��` are
mildly in tension with the prediction of the best-fitting ⇤CDM
model. In particular, for the conservative multipole range 40 
`  400, the temperature+polarization reconstruction has �2 =
15.4 (for eight degrees of freedom), with a PTE of 5.2 %. For
reference, over the full multipole range �2 = 40.81 for 19 de-
grees of freedom (PTE of 0.3 %); the large �2 is driven by a
single bandpower (638  `  762), and excluding this gives an
acceptable �2 = 26.8 (PTE of 8 %). We caution the reader that
this multipole range is where the lensing reconstruction shows a
mild excess of curl-modes (Planck Collaboration XV 2015), and

15In detail, the theory spectrum is binned in the same way as the
data, renormalized to account for the (very small) di↵erence between
the CMB spectra in the best-fit model and the fiducial spectra used in the
lensing analysis, and corrected for the di↵erence in N(1), calculated for
the best-fit and fiducial models (around a 4 % change in N(1), since the
fiducial-model C��` is higher by this amount than in the best-fit model).
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Fig. 14. Acoustic-scale distance ratio DV(z)/rdrag in the base
⇤CDM model divided by the mean distance ratio from Planck
TT+lowP+lensing. The points with 1� errors are as follows:
green star (6dFGS, Beutler et al. 2011); square (SDSS MGS,
Ross et al. 2014); red triangle and large circle (BOSS “LOWZ”
and CMASS surveys, Anderson et al. 2014); and small blue cir-
cles (WiggleZ, as analysed by Kazin et al. 2014). The grey bands
show the 68 % and 95 % confidence ranges allowed by Planck
TT+lowP+lensing.

The changes to the data points compared to figure 15 of
PCP13 are as follows. We have replaced the SDSS DR7 mea-
surements of Percival et al. (2010) with the recent analysis of
the SDSS Main Galaxy Sample (MGS) of Ross et al. (2014) at
ze↵ = 0.15, and by the Anderson et al. (2014) analysis of the
Baryon Oscillation Spectroscopic Survey (BOSS) ‘LOWZ’ sam-
ple at ze↵ = 0.32. Both of these analyses use peculiar veloc-
ity field reconstructions to sharpen the BAO feature and reduce
the errors on DV/rdrag. The blue points in Fig. 14 show a re-
analysis of the WiggleZ redshift survey by Kazin et al. (2014)
applying peculiar velocity reconstructions. The reconstructions
causes small shifts in DV/rdrag compared to the unreconstructed
WiggleZ results of Blake et al. (2011) and lead to reductions
in the errors on the distance measurements at ze↵ = 0.44 and
ze↵ = 0.73. The point labelled BOSS CMASS at ze↵ = 0.57
shows DV/rdrag from the analysis of Anderson et al. (2014), up-
dating the BOSS-DR9 analysis of Anderson et al. (2012) used in
PCP13.

In fact, the Anderson et al. (2014) analysis solves jointly for
the positions of the BAO feature in both the line-of-sight and
transverse directions (the distortion in the transverse direction
caused by the background cosmology is sometimes called the
Alcock-Paczynski e↵ect, Alcock & Paczynski 1979), leading to
joint constraints on the angular diameter distance DA(ze↵) and
the Hubble parameter H(ze↵). These constraints, using the tabu-
lated likelihood included in the CosmoMC module16, are plotted
in Fig. 15. Samples from the Planck TT+lowP+lensing chains
are plotted coloured by the value of ⌦ch2 for comparison. The
length of the degeneracy line is set by the allowed variation in H0
(or equivalently⌦mh2). In the Planck TT+lowP+lensing⇤CDM
analysis the line is defined approximately by

DA(0.57)/rdrag

9.384

 
H(0.57)rdrag/c

0.4582

!1.7

= 1 ± 0.0004, (26)

16http://www.sdss3.org/science/boss_publications.php

Fig. 15. 68 % and 95 % constraints on the angular diameter dis-
tance DA(z = 0.57) and Hubble parameter H(z = 0.57) from
the Anderson et al. (2014) analysis of the BOSS CMASS-DR11
sample. The fiducial sound horizon adopted by Anderson et al.
(2014) is rfid

drag = 149.28 Mpc. Samples from the Planck
TT+lowP+lensing chains are plotted coloured by their value of
⌦ch2, showing consistency of the data, but also that the BAO
measurement can tighten the Planck constraints on the matter
density.

which just grazes the BOSS CMASS 68 % error ellipse plotted
in Fig. 15. Evidently, the Planck base ⇤CDM parameters are
in good agreement with both the isotropized DV BAO measure-
ments plotted in Fig. 14, and with the anisotropic constraints
plotted in Fig. 15.

In this paper, we use the 6dFGS, SDSS-MGS and BOSS-
LOWZ BAO measurements of DV/rdrag (Beutler et al. 2011;
Ross et al. 2014; Anderson et al. 2014) and the CMASS-DR11
anisotropic BAO measurements of Anderson et al. (2014). Since
the WiggleZ volume partially overlaps that of the BOSS-
CMASS sample, and the correlations have not been quantified,
we do not use the WiggleZ results in this paper. It is clear from
Fig. 14 that the combined BAO likelihood is dominated by the
two BOSS measurements.

In the base ⇤CDM model, the Planck data constrain the
Hubble constant H0 and matter density ⌦m to high precision:

H0 = (67.3 ± 1.0) km s�1Mpc�1

⌦m = 0.315 ± 0.013

)
Planck TT+lowP. (27)

With the addition of the BAO measurements, these constraints
are strengthened significantly to

H0 = (67.6 ± 0.6) km s�1Mpc�1

⌦m = 0.310 ± 0.008

)
Planck TT+lowP+BAO.

(28)
These numbers are consistent with the Planck+lensing con-
straints of Eq. (21). Section 5.4 discusses the consistency of
these estimates of H0 with direct measurements.

Although low redshift BAO measurements are in good agree-
ment with Planck for the base ⇤CDM cosmology, this may not
be true at high redshifts. Recently, BAO features have been mea-
sured in the flux-correlation function of the Ly↵ forest of BOSS
quasars (Delubac et al. 2014) and in the cross-correlation of the
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with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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Fig. 35. Predictions of standard BBN for the primordial abun-
dance of 4He (top) and deuterium (bottom), as a function of the
baryon density !b. The width of the green stripes corresponds
to 68 % uncertainties on nuclear reaction rates and on the neu-
tron lifetime. The horizontal bands show observational bounds
on primordial element abundances compiled by various authors,
and the red vertical band shows the Planck TT+lowP+BAO
bounds on !b (all with 68 % errors). The BBN predictions and
CMB results shown here assume Ne↵ = 3.046 and no significant
lepton asymmetry.

the neutron life-time:

YBBN
P = 0.2311 + 0.9502!b � 11.27!2

b

+ �Ne↵
⇣
0.01356 + 0.008581!b � 0.1810!2

b

⌘

+ �N2
e↵

⇣
�0.0009795 � 0.001370!b + 0.01746!2

b

⌘
;

(70)

yDP = 18.754 � 1534.4!b + 48656!2
b � 552670!3

b

+ �Ne↵
⇣
2.4914 � 208.11!b + 6760.9!2

b � 78007!3
b

⌘

+ �N2
e↵

⇣
0.012907 � 1.3653!b + 37.388!2

b � 267.78!3
b

⌘
.

(71)

By averaging over several measurements, the Particle Data
Group 2014 (Olive et al. 2014) estimates the neutron life-time
to be ⌧n = (880.3 ± 1.1) s at 68 % CL.26 The expansions in
Eqs. (70) and (71) are based on this central value, and we as-
sume that Eq. (70) predicts the correct helium fraction up to a
standard error �(YBBN

P ) = 0.0003, obtained by propagating the
error on ⌧n.

The uncertainty on the deuterium fraction is dominated
by that on the rate of the reaction d(p, �)3He. For that rate,
in PCP13 we relied on the result of Serpico et al. (2004),
obtained by fitting several experiments. The expansions of
Eqs. (70) and (71) now adopt the latest experimental determi-
nation by Adelberger et al. (2011) and use the best-fit expres-
sion in their Eq. (29). We also rely on the uncertainty quoted in

26However, the most recent individual measurement by Yue et al.
(2013) gives ⌧n = [887.8±1.2 (stat.)±1.9 (syst.)] s, which is discrepant
at 3.3� with the previous average (including only statistical errors).
Hence one should bear in mind that systematic e↵ects could be under-
estimated in the Particle Data Group result. Adopting the central value
of Yue et al. (2013) would shift our results by a small amount, a↵ecting
mainly helium (by a factor 1.0062 for YP and 1.0036 for yDP).

Adelberger et al. (2011) and propagate it to the deuterium frac-
tion. This gives a standard error �(yDP) = 0.06, which is more
conservative than the error adopted in PCP13.

6.5.1. Primordial abundances from Planck data and
standard BBN

We first investigate the consistency of standard BBN and the
CMB by fixing the radiation density to its standard value, i.e.,
Ne↵ = 3.046, based on the assumption of standard neutrino de-
coupling and no extra light relics. We can then use Planck data to
measure !b assuming base ⇤CDM and test for consistency with
experimental abundance measurements. The 95 % CL bounds
obtained for the base ⇤CDM model for various data combina-
tions are

!b =

8>>>>>>>><
>>>>>>>>:

0.02222+0.00045
�0.00043 Planck TT+lowP,

0.02226+0.00040
�0.00039 Planck TT+lowP+BAO,

0.02225+0.00032
�0.00030 Planck TT,TE,EE+lowP,

0.02229+0.00029
�0.00027 Planck TT,TE,EE+lowP+BAO,

(72)
corresponding to a predicted primordial 4He number density
fraction (95 % CL) of

YBBN
P =

8>>>>>>>>><
>>>>>>>>>:

0.24665+(0.00020) 0.00063
�(0.00019) 0.00063 Planck TT+lowP,

0.24667+(0.00018) 0.00063
�(0.00018) 0.00063 Planck TT+lowP+BAO,

0.24667+(0.00014) 0.00062
�(0.00014) 0.00062 Planck TT,TE,EE+lowP,

0.24668+(0.00013) 0.00061
�(0.00013) 0.00061 Planck TT,TE,EE+lowP+BAO,

(73)
and deuterium fraction (95 % CL)

yDP =

8>>>>>>>>><
>>>>>>>>>:

2.620+(0.083) 0.15
�(0.085) 0.15 Planck TT+lowP,

2.612+(0.075) 0.14
�(0.074) 0.14 Planck TT+lowP+BAO,

2.614+(0.057) 0.13
�(0.060) 0.13 Planck TT,TE,EE+lowP,

2.606+(0.051) 0.13
�(0.054) 0.13 Planck TT,TE,EE+lowP+BAO.

(74)
The first set of error bars (in parentheses) in Eqs. (73) and (74)
reflect only the uncertainty on !b. The second set includes the
theoretical uncertainty on the BBN predictions, added in quadra-
ture to the errors from !b. The total errors in the predicted he-
lium abundances are dominated by the BBN uncertainty as in
PCP13. For deuterium, the Planck 2015 results improve the de-
termination of !b to the point where the theoretical errors are
comparable or larger than the errors from the CMB. In other
words, for base ⇤CDM the predicted abundances cannot be im-
proved substantially by further measurements of the CMB. This
also means that Planck results can, in principle, be used to in-
vestigate nuclear reaction rates that dominate the theoretical un-
certainty (see Sect. 6.5.2).

The results of Eqs. (73) and (74) are well within the
ranges indicated by the latest measurement of primordial abun-
dances, as illustrated by Fig. 35. The helium data compilation of
Aver et al. (2013) gives YBBN

P = 0.2465 ± 0.0097 (68 % CL),
and the Planck prediction is near the middle of this range.27

As summarized by Aver et al. (2013); Peimbert (2008) helium

27A substantial part of this error comes from the regression to zero
metallicity. The mean of the 17 measurements analysed by Aver et al.
(2013) is hYBBN

P i = 0.2535 ± 0.0036, i.e., about 1.7� higher than the
Planck predictions of Eq. (73).
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Fig. 18. Samples in the �8–⌦m plane from the H13 CFHTLenS
data (with angular cuts as discussed in the text), coloured by the
value of the Hubble parameter, compared to the joint constraints
when the lensing data are combined with BAO (blue), and BAO
with the CMB acoustic scale parameter fixed to ✓MC = 1.0408
(green). For comparison the Planck TT+lowP constraint con-
tours are shown in black. The grey band show the constraint from
Planck CMB lensing.

authors argue may be indications of the e↵ects of baryonic feed-
back in suppressing the matter power spectrum at small scales).
The large-scale properties of CFHTLenS therefore seem broadly
consistent with Planck and it is only as CFHTLenS probes
higher wavenumbers, particular in the 2D and tomographic cor-
relation function analyses (Heymans et al. 2013; Kilbinger et al.
2013; Fu et al. 2014; MacCrann et al. 2014), that apparently
strong discrepancies with Planck appear.

The situation is summarized in Fig. 18. The sample points
show parameter values in the �8–⌦m plane for the ⇤CDM base
model, computed from the Heymans et al. (2013, hereafter H13)
tomographic measurements of ⇠±. These data consist of correla-
tion function measurements in six photometric redshift bins ex-
tending over the redshift range 0.2–1.3. We use the blue galaxy
sample, since H13 find that this sample shows no evidence for
intrinsic galaxy alignments (simplifying the comparison with
theory) and we apply the “conservative” cuts of H13, intended
to reduce sensitivity to the nonlinear part of the power spec-
trum; these cuts eliminate measurements with ✓ < 30 for any
redshift combinations involving the lowest two redshift bins.
Here we have used the halofit prescription of Takahashi et al.
(2012) to model the nonlinear power spectrum, but do not in-
clude any model of baryon feedback or intrinsic alignments.
For the lensing-only constraint we also impose additional pri-
ors in a similar way to the CMB lensing analysis described
in Planck Collaboration XV (2015), i.e., Gaussian priors⌦bh2 =
0.0223 ± 0.0009 and ns = 0.96 ± 0.02, where the exact values
(chosen to span reasonable ranges given CMB data) have little
impact on the results. The sample range shown also restricts the
Hubble parameter to 0.2 < h < 1; note that when comparing
with constraint contours, the location of the contours can change
significantly depending on the H0 prior range assumed. Here we
only show lensing contours after the samples have been pro-
jected into the space allowed by the BAO data (blue contours),
or also additionally restricting to the reduced space where ✓MC

is fixed to the Planck value, which is accurately measured. The
black contours show the constraints from Planck TT+lowP.

The lensing samples just overlap with Planck, and super-
ficially one might conclude that the two data sets are con-
sistent. But the weak lensing constraints approximately define
a 1-dimensional degeneracy in the 3-dimensional ⌦m–�8–H0
space, so consistency of the Hubble parameter at each point in
the projected space must also be considered (see appendix E1
of Planck Collaboration XV 2015). Comparing the contours in
Fig. 18 (the regions where the weak lensing constraints are con-
sistent with BAO observations) the CFHTLenS data favour a
lower value of �8 than the Planck data (and much of the area
of the blue contours also has higher ⌦m). However, even with
the conservative angular cuts applied by H13, the weak lens-
ing constraints depend on the nonlinear model of the power
spectrum and on the possible influence of baryonic feedback
in reshaping the matter power spectrum at small spatial scales
(Harnois-Déraps et al. 2014; MacCrann et al. 2014). The impor-
tance of these e↵ects can be reduced by imposing even more
conservative angular cuts on ⇠±, but of course, this weakens the
statistical power of the weak lensing data. The CFHTLenS data
are not used in combination with Planck in this paper (apart
from Sects. 6.3 and 6.4.4) and, in any case, would have little
impact on most of the extended ⇤CDM constraints discussed
in Sect. 6. Weak lensing can, however, provide important con-
straints on dark energy and modified gravity. The CFHTLenS
data are therefore used in combination with Planck in the com-
panion paper (Planck Collaboration XIV 2015) which explores
several halofit prescriptions and the impact of applying more
conservative angular cuts to the H13 measurements.

5.5.3. Planck cluster counts

In 2013 we noted a possible tension between our primary CMB
constraints and those from the Planck SZ cluster counts, with the
clusters preferring lower values of �8 in the base ⇤CDM model
in some analyses (Planck Collaboration XX 2014). The compar-
ison is interesting because the cluster counts directly measure �8
at low redshift; any tension could signal the need for extensions
of the base model, such as non-minimal neutrino mass (though
see Sect. 6.4). However, limited knowledge of the scaling rela-
tion between SZ signal and mass have hampered the interpreta-
tion of this result.

With the full mission data we have created a larger cata-
logue of SZ clusters with a more accurate characterization of
its completeness (Planck Collaboration XXIV 2015). By fitting
the counts in redshift and signal-to-noise, we are able to si-
multaneously constrain the slope of the SZ signal-mass scal-
ing relation and the cosmological parameters. A major uncer-
tainty, however, remains the overall mass calibration, which
in Planck Collaboration XX (2014) we quantified with a bias
parameter, (1 � b), with a fiducial value of 0.8 and a range
0.7 < (1 � b) < 1. In the base ⇤CDM model, the primary
CMB constraints prefer a normalization below the lower end
of this range, (1 � b) ⇡ 0.6. The recent, empirical normaliza-
tion of the relation by the Weighing the Giants lensing program
(WtG; von der Linden et al. 2014) gives 0.69 ± 0.07 for the 22
clusters in common with the Planck cluster sample. This cali-
bration reduces the tension with the primary CMB constraints in
base ⇤CDM. In contrast, correlating the entire Planck 2015 SZ
cosmology sample with Planck CMB lensing gives 1/(1 � b) =
1±0.2 (Planck Collaboration XXIV 2015), toward the upper end
of the range adopted in Planck Collaboration XX (2014) (though
with a large uncertainty). An alternative lensing calibration by
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Figure 8: Conformal diagram of Big Bang cosmology. The CMB at last-scattering (recombination)

consists of 105 causally disconnected regions!

Also recall that in conformal coordinates null geodesics (ds2 = 0) are always at 45� angles, d⌧ =

±
p

dx2 ⌘ ±dr. Since light determines the causal structure of spacetime this provides a nice way to

study horizons in inflationary cosmology.

During matter or radiation domination the scale factor evolves as

a(⌧) /
(

⌧ RD

⌧2 MD
. (58)

If and only if the universe had always been dominated by matter or radiation, this would imply the

existence of the Big Bang singularity at ⌧i = 0

a(⌧i ⌘ 0) = 0 . (59)

The conformal diagram corresponding to standard Big Bang cosmology is given in Figure 8. The

horizon problem is apparent. Each spacetime point in the conformal diagram has an associated past

light cone which defines its causal past. Two points on a given ⌧ = constant surface are in causal

contact if their past light cones intersect at the Big Bang, ⌧i = 0. This means that the surface

of last-scattering (⌧CMB) consisted of many causally disconnected regions that won’t be in thermal

equilibrium. The uniformity of the CMB on large scales hence becomes a serious puzzle.

During inflation (H ⇡ const.), the scale factor is

a(⌧) = � 1

H⌧
, (60)

and the singularity, a = 0, is pushed to the infinite past, ⌧i ! �1. The scale factor (60) becomes

infinite at ⌧ = 0! This is because we have assumed de Sitter space with H = const., which means

that inflation will continue forever with ⌧ = 0 corresponding to the infinite future t ! +1. In
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to some arbitrarily chosen scale kNL. Theoretical errors
e↵ectively restrict the range of useful modes to those for
which the signal dominates over the theoretical uncer-
tainty. In this way the realistic kmax can be surprisingly
lower than kNL and this reduction of the number modes
leads to bigger uncertainties on inferred parameters.

We will describe in detail how to consistently calculate
the Fisher matrix including the theoretical uncertainties.
We will apply this general framework to measurements
of the sum of neutrino masses and primordial NG (for
a similar earlier study for the case of neutrino mass see
[11]). Obtaining realistic and very precise forecasts, par-
ticularly for very high redshift surveys, is beyond the
scope of this paper. Our primary goal is to study the
e↵ect of theoretical uncertainties on the amount of use-
ful information in a given volume. We will therefore use
simple analytical models whenever possible and assume
ideal surveys. In this sense our final results are opti-
mistic, but nevertheless give a very good estimate of how
much theoretical errors degrade the constraints.

Before moving to the more systematic treatment, in
the rest of this section we motivate the basic idea in the
example of equilateral NG.

A. Example of Equilateral NG

Primordial NG are important observables because they
contain information about the very early phases of cos-
mic evolution. The current upper bounds on the most
interesting equilateral and local shapes are [12]

f loc.
NL = 0.8± 5.0 , f eq.

NL = �4± 43 , (68% CL) . (1)

Even though these upper limits are quite strong, a theo-
retically interesting threshold is fNL ⇠ 1. Any detection
of non-zero NG would be very exciting, but even the ob-
servation that both f loc.

NL and f eq.
NL are smaller than one

would be very informative. It would favor single-field and
slow-roll inflation and practically rule out a large class of
inflationary models with modified kinetic term or more
than one light field during inflation. Although futuris-
tic experiments including polarization have a potential
to improve the current constraints almost by a factor of
2 (see for example [13]), it will be hard to reach fNL ⇠ 1
from the CMB alone.

The other way to detect primordial NG is through its
imprint on the bispectrum of density fluctuations in the
late universe. The full bispectrum B(k1,k2,k3) of the
density contrast � is a sum of the primordial part and
the one generated by the gravitational interactions. For
simplicity, let us focus on redshift z = 0 and assume that
all momenta in the bispectrum are of the same magnitude
k. The primordial contribution is approximately

Beq.(k) ⇠ P 2(k) · f eq.
NL

9H2
0⌦m

k2T (k)D+(0)
, (2)

where T (k) is the transfer function, H0 the present day
value of the Hubble constant, ⌦m the matter density pa-

rameter and D+(z) the perturbation growth factor. The
gravitational part can be calculated using perturbation
theory. If one calculates the bispectrum including (l� 1)
loops, the result can be schematically written as

Bgrav.(k) ⇠ P 2(k) [“(l � 1)�loop” + E(l, k)] , (3)

where the second term is the theoretical error. As we
discussed, the typical size of this error is E(l, k) =
O((k/kNL)(3+n)l). Notice that for the leading tree-level
bispectrum the first term in square brackets is O(1).
From the previous expressions it is clear that while the

theoretical error grows, the primordial part decays with
k. We are interested in the scale kmax for which they
become comparable. This scale sets the range of modes
that we are allowed to use in the analysis:

f eq.
NL

9H2
0⌦m

k2maxT (kmax)D+(0)
⇠

✓
kmax

kNL

◆(3+n)l

. (4)

For example, if we calculate the 1-loop bispectrum (cor-
responding to l = 2 for the error), for a target of f eq.

NL ⇠ 1
it turns out that kmax = 0.03 hMpc�1. This is quite
smaller than the naive cuto↵ kNL and deep in the per-
turbative regime. On second thought, this result should
not be so surprising. For the given kmax and f eq.

NL ⇠ 1 the
relative size of primordial part is

f eq.
NL

9H2
0⌦m

k2maxT (kmax)D+(0)
⇠ O(10�3) , (5)

which should be compared with the O(1) gravitational
contribution in Eq. (3). To get this precision on the
gravitational bispectrum one has to stay far away from
the nonlinear scale. This precision is an order of mag-
nitude smaller than the usual theoretical target, which
is O(1%). This is true for perturbation theory as well
as for simulations. In order to be useful for detection
of small equilateral NG, the theoretical models have to
significantly improve.
So far we were just comparing primordial and grav-

itational signal to estimate kmax. It is interesting to
ask whether f eq.

NL ⇠ 1 is even achievable with kmax =
0.03 h/Mpc�1 and what kind of survey volume is needed.
To find the answer we have to calculate the signal-to-
noise, which is given by

✓
S

N

◆2

=
V 2

(2⇡)6

Z
d3k1d

3k2d
3k3

Beq.(k1,k2,k3)2

P (k1)P (k2)P (k3)

⇡ V

(2⇡)3
k3maxf

eq.
NL

2A · O(1) ,

(6)

where A = 2.215 · 10�9 is the normalization of the power
spectrum. This can be rewritten as �(f eq.

NL) ⇠ 2·104/pN ,
where N = (kmax/kmin)3 is the number of modes. With
NG of order unity we naively get kmin ⇠ 10�3kmax which,
for the above estimate of kmax, corresponds to unobserv-
able super-horizon scales.

(Departure from scale-invariance)
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Space based experiments

Stage−I − ≈ 100 detectors

Stage−II − ≈ 1,000 detectors

Stage−III − ≈ 10,000 detectors

Stage−IV − ≈ 100,000 detectors

Figure 6. Plot illustrating the evolution of the raw sensitivity of CMB experiments, which scales as
the total number of bolometers. Ground-based CMB experiments are classified into Stages with Stage II
experiments having O(1000) detectors, Stage III experiments having O(10,000) detectors, and a Stage IV
experiment (such as CMB-S4) having O(100,000) detectors.

consequence, the fundamental production unit for TES devices are arrays of detectors (see Fig. 8), an
important attribute when considering the production of the 500,000 detectors required by CMB-S4. Second
TES devices are low-impedance (1 ⌦) and can be multiplexed with modern-day Superconducting QUantum
Interference Device (SQUID) multiplexers [96, 97, 98]. Multiplexed readouts are important for operating
large detector arrays at sub-Kelvin temperatures and are essential for CMB-S4. Lastly, TES detectors have
been successfully deployed as focal planes at the forefront of CMB measurements.

The TES was invented by HEP for detecting Dark Matter and neutrinos. Its subsequent integration into
CMB focal planes has enabled kilo-pixel arrays realizing the Stage II CMB program and ushering in an
era of unprecedented sensitivity. TES-based CMB detectors are the favored technology among Stage II
and proposed Stage III experiments, and have a clear path to the sensitivities required by CMB-S4. The
ubiquity of TES detectors for CMB illustrates the direct connection between HEP-invented technology and
CMB science.

The CMB-S4 Experimental Program

Delivering a half-million background-limited bolometers necessitates a change in the execution of the US
ground-based CMB program. The current US program consists of a number of independent (primarily

Community Planning Study: Snowmass 2013
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Can we get a second fossil? Can we learn more about the 
scalar fluctuations?
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WMAP

Planck Collaboration: Cosmological parameters

Fig. 10. Planck TT power spectrum. The points in the upper panel show the maximum-likelihood estimates of the primary CMB
spectrum computed as described in the text for the best-fit foreground and nuisance parameters of the Planck+WP+highL fit listed
in Table 5. The red line shows the best-fit base ⇤CDM spectrum. The lower panel shows the residuals with respect to the theoretical
model. The error bars are computed from the full covariance matrix, appropriately weighted across each band (see Eqs. 36a and
36b), and include beam uncertainties and uncertainties in the foreground model parameters.

Fig. 11. Planck T E (left) and EE spectra (right) computed as described in the text. The red lines show the polarization spectra from
the base ⇤CDM Planck+WP+highL model, which is fitted to the TT data only.
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State of the art prior to BICEP2 

T ⇠ 10 to 70 µK

E ⇠ 1 to 5 µK



BICEP 2: Evidence for 
Cosmic Inflation
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The sun sets behind BICEP2 (in the foreground) and the South Pole
Telescope (in the background). (Steffen Richter/VagabondPix.co)

By Joel Achenbach  June 19    

The esoteric field of cosmology exploded into front-page

news in March when scientists announced at a news

conference at Harvard that they had seen signs of

gravitational waves emanated at the dawn of time. Then

came the peer-review process, and now it’s all up in the

air. The same scientists have published a revised and

updated version of their original paper, acknowledging

that it’s possible they detected only an effect created by

Follow Follow @joelachenbach@joelachenbach

Advertisement

The original paper concluded, “The long search for tensor 
B-modes is apparently over, and a new era of B-mode 
cosmology has begun.” 

The peer-reviewed, published paper hedges that 
statement significantly and elaborates on the 
uncertainties: “If the origin is in tensors, as favored by 
the evidence presented above, it heralds a new era of B-
mode cosmology. However, if these B modes represent 
evidence of high-dust foreground, it reveals the scale of 
the challenges that lie ahead.”

9/11/14 10:29 AMAstronomers Hedge on Big Bang Detection Claim - NYTimes.com

Page 1 of 4http://www.nytimes.com/2014/06/20/science/space/scientists-debate-g…rch&mabReward=relbias:s,%7B&quot;2&quot;:&quot;RI:18&quot;%7D&_r=0
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Astronomers Hedge on Big Bang Detection Claim

By DENNIS OVERBYE JUNE 19, 2014

A group of astronomers who announced in March that they had detected space-
time disturbances — gravitational waves — from the beginning of the Big Bang
reaffirmed their claim on Thursday but conceded that dust from the Milky Way
galaxy might have interfered with their observations.

The original announcement, heralding what the astronomers said could be
“a new era” in cosmology, astounded and exhilarated scientists around the
world. At a splashy news conference on March 17 at the Harvard-Smithsonian
Center for Astrophysics in Cambridge, Mass., the talk quickly turned to multiple
universes and Nobel Prizes.

But even as reporters and scientists were gathering there, others convened
on Facebook and elsewhere to pick apart the findings. What ensued was a rare
example of the scientific process — sharp elbows, egos and all — that played out
the last three months.

If the findings are indeed true, the detection of those gravitational waves
would confirm a theory that the universe began with a violent outward
antigravitational swoosh known as inflation — a notion that would explain the
uniformity of the heavens, among other mysteries, and put physicists in touch
with quantum forces that prevailed when the universe was only a trillionth of a
trillionth of a second old. The idea once seemed like science fiction, but the
astronomers’ findings put it almost in reach.

As everyone involved said at the time, however, the results needed to be
confirmed; it was far too soon to book travel to those other universes.

Now, after weeks of wrangling, discussion and debate with peer reviewers
and other astrophysicists, the group, which goes by the name Bicep, has
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Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied

14

0 50 100 150 200 250 300
−0.01

0

0.01

0.02

0.03

0.04

0.05

Multipole

BB
 l(

l+
1)

C
l/2
π 

[µ
K2 ]

 

 
BKxBK
(BKxBK−αBKxP)/(1−α)

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

r
L/

L pe
ak

 

 
Fiducial analysis
Cleaning analysis

FIG. 12. Upper: BB spectrum of the BICEP2/Keck maps be-
fore and after subtraction of the dust contribution, estimated
from the cross-spectrum with Planck 353GHz. The error bars
are the standard deviations of simulations, which, in the lat-
ter case, have been scaled and combined in the same way. The
inner error bars are from lensed-⇤CDM+noise simulations as
in the previous plots, while the outer error bars are from
the lensed-⇤CDM+noise+dust simulations. The red curve
shows the lensed-⇤CDM expectation. Lower: constraint on r
derived from the cleaned spectrum compared to the fiducial
analysis shown in Fig. 6.

analysis with the full multi-spectra likelihood. It is clear
from the widths of the likelihood curves that compressing
the spectra to form the cleaned di↵erence results in very
little loss of information on r. The di↵erence in peak
values arises from the di↵erent data treatments and is
consistent with the scatter seen across simulations. Fi-
nally, we note that one could also form a combination
(BK⇥BK�2↵BK⇥P+↵2P⇥P)/(1�↵)2 in which dust
does not enter at all for ↵ = ↵fid. However, the variance
of this combination of spectra is large due to the Planck
noise levels, and likelihoods built from this combination
are considerably less constraining.

V. POSSIBLE CAUSES OF DECORRELATION

Any systematic error that suppresses the BK150⇥P353
cross-frequency spectrum with respect to the
BK150⇥BK150 and P353⇥P353 single-frequency
spectra would cause a systematic upward bias on the r
constraint. Here we investigate a couple of possibilities.

A. Spatially varying dust frequency spectrum

If the frequency dependence of polarized dust emission
varied from place to place on the sky, it would cause the
150GHz and 353GHz dust sky patterns to decorrelate
and suppress the BK150⇥P353 cross-frequency spectrum
relative to the single-frequency spectra. The assump-
tion made so far in this paper is that such decorrela-
tion is negligible. In fact PIP-XXX implicitly tests for
such variation in their Figure 6, where the Planck single-
and cross-frequency spectra are compared to the modi-
fied blackbody model (with the cross-frequency spectra
plotted at the geometric mean of their respective frequen-
cies). This plot is for an average over a large region of low
foreground sky (24%); however, note that if there were
spatial variation of the spectral behavior anywhere in this
region it would cause suppression of the cross-frequency
spectra with respect to the single-frequency spectra.
PIP-XXX also tests explicitly for evidence of decorre-

lation of the dust pattern across frequencies. Their fig-
ure E.1 shows the results for large and small sky patches.
The signal-to-noise ratio is low in clean regions, but no
evidence of decorrelation is found.
As a further check, we artificially suppress the ampli-

tude of the BK150⇥P353 spectra in the Gaussian dust-
only simulations (see Sec. IVA) by a conservative 10%
(PIP-XXX sets a 7% upper limit). We find that the
maximum likelihood value for r shifts up by an average
of 0.018, while Ad shifts down by an average of 0.43µK2,
with the size of the shift proportional to the magnitude of
the dust power in each given realization. This behavior
is readily understandable—since the BK150⇥BK150 and
BK150⇥P353 spectra dominate the statistical weight, a
decrease of the latter is interpreted as a reduction in dust
power, which is compensated by an increase in r. The
bias on r will be linearly related to the assumed decorre-
lation factor.

B. Calibration, analysis etc.

Figure 3 shows that the EE spectrum BK150⇥BK150
is extremely similar to that for BK150⇥P143. We
can compare such spectra to set limits on possible
decorrelation between the BICEP2/Keck and Planck
maps arising from any instrumental or analysis re-
lated e↵ect, including di↵erential pointing, polarization
angle mis-characterization, etc. Taking the ratio of
BK150⇥P143 to the geometric mean of BK150⇥BK150
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to some arbitrarily chosen scale kNL. Theoretical errors
e↵ectively restrict the range of useful modes to those for
which the signal dominates over the theoretical uncer-
tainty. In this way the realistic kmax can be surprisingly
lower than kNL and this reduction of the number modes
leads to bigger uncertainties on inferred parameters.

We will describe in detail how to consistently calculate
the Fisher matrix including the theoretical uncertainties.
We will apply this general framework to measurements
of the sum of neutrino masses and primordial NG (for
a similar earlier study for the case of neutrino mass see
[11]). Obtaining realistic and very precise forecasts, par-
ticularly for very high redshift surveys, is beyond the
scope of this paper. Our primary goal is to study the
e↵ect of theoretical uncertainties on the amount of use-
ful information in a given volume. We will therefore use
simple analytical models whenever possible and assume
ideal surveys. In this sense our final results are opti-
mistic, but nevertheless give a very good estimate of how
much theoretical errors degrade the constraints.

Before moving to the more systematic treatment, in
the rest of this section we motivate the basic idea in the
example of equilateral NG.

A. Example of Equilateral NG

Primordial NG are important observables because they
contain information about the very early phases of cos-
mic evolution. The current upper bounds on the most
interesting equilateral and local shapes are [12]

f loc.
NL = 0.8± 5.0 , f eq.

NL = �4± 43 , (68% CL) . (1)

Even though these upper limits are quite strong, a theo-
retically interesting threshold is fNL ⇠ 1. Any detection
of non-zero NG would be very exciting, but even the ob-
servation that both f loc.

NL and f eq.
NL are smaller than one

would be very informative. It would favor single-field and
slow-roll inflation and practically rule out a large class of
inflationary models with modified kinetic term or more
than one light field during inflation. Although futuris-
tic experiments including polarization have a potential
to improve the current constraints almost by a factor of
2 (see for example [13]), it will be hard to reach fNL ⇠ 1
from the CMB alone.

The other way to detect primordial NG is through its
imprint on the bispectrum of density fluctuations in the
late universe. The full bispectrum B(k1,k2,k3) of the
density contrast � is a sum of the primordial part and
the one generated by the gravitational interactions. For
simplicity, let us focus on redshift z = 0 and assume that
all momenta in the bispectrum are of the same magnitude
k. The primordial contribution is approximately

Beq.(k) ⇠ P 2(k) · f eq.
NL

9H2
0⌦m

k2T (k)D+(0)
, (2)

where T (k) is the transfer function, H0 the present day
value of the Hubble constant, ⌦m the matter density pa-

rameter and D+(z) the perturbation growth factor. The
gravitational part can be calculated using perturbation
theory. If one calculates the bispectrum including (l� 1)
loops, the result can be schematically written as

Bgrav.(k) ⇠ P 2(k) [“(l � 1)�loop” + E(l, k)] , (3)

where the second term is the theoretical error. As we
discussed, the typical size of this error is E(l, k) =
O((k/kNL)(3+n)l). Notice that for the leading tree-level
bispectrum the first term in square brackets is O(1).
From the previous expressions it is clear that while the

theoretical error grows, the primordial part decays with
k. We are interested in the scale kmax for which they
become comparable. This scale sets the range of modes
that we are allowed to use in the analysis:

f eq.
NL

9H2
0⌦m

k2maxT (kmax)D+(0)
⇠

✓
kmax

kNL

◆(3+n)l

. (4)

For example, if we calculate the 1-loop bispectrum (cor-
responding to l = 2 for the error), for a target of f eq.

NL ⇠ 1
it turns out that kmax = 0.03 hMpc�1. This is quite
smaller than the naive cuto↵ kNL and deep in the per-
turbative regime. On second thought, this result should
not be so surprising. For the given kmax and f eq.

NL ⇠ 1 the
relative size of primordial part is

f eq.
NL

9H2
0⌦m

k2maxT (kmax)D+(0)
⇠ O(10�3) , (5)

which should be compared with the O(1) gravitational
contribution in Eq. (3). To get this precision on the
gravitational bispectrum one has to stay far away from
the nonlinear scale. This precision is an order of mag-
nitude smaller than the usual theoretical target, which
is O(1%). This is true for perturbation theory as well
as for simulations. In order to be useful for detection
of small equilateral NG, the theoretical models have to
significantly improve.
So far we were just comparing primordial and grav-

itational signal to estimate kmax. It is interesting to
ask whether f eq.

NL ⇠ 1 is even achievable with kmax =
0.03 h/Mpc�1 and what kind of survey volume is needed.
To find the answer we have to calculate the signal-to-
noise, which is given by
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2A · O(1) ,

(6)

where A = 2.215 · 10�9 is the normalization of the power
spectrum. This can be rewritten as �(f eq.

NL) ⇠ 2·104/pN ,
where N = (kmax/kmin)3 is the number of modes. With
NG of order unity we naively get kmin ⇠ 10�3kmax which,
for the above estimate of kmax, corresponds to unobserv-
able super-horizon scales.

(Departure from scale-invariance)



Why is the Universe so old/big?  Attractor solution. 
Seeds for structure formation are quantum fluctuations of the clock. 

The standard model



Inflationary dynamics

p = w⇢ = (�1 + ✏)⇢

Almost exponential expansion
Only small departures from 
Cosmological Constant because 
Inflation has to end

During this period the Universe must have expanded by roughly 60 enfolds

N = ln(afinal/a?) ⇡ 60

✏ = � Ḣ

H2

ds

2 = �dt
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2(t)dx2

H =
ȧ
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Horizon scale

5.1.2 Flatness Problem Revisited

Recall the Friedmann Equation (41) for a non-flat universe

|1 � ⌦(a)| =
1

(aH)2
. (49)

If the comoving Hubble radius decreases this drives the universe toward flatness (rather than away

from it). This solves the flatness problem! The solution ⌦ = 1 is an attractor during inflation.

5.1.3 Horizon Problem Revisited

A decreasing comoving horizon means that large scales entering the present universe were inside the

horizon before inflation (see Figure 2). Causal physics before inflation therefore established spatial

homogeneity. With a period of inflation, the uniformity of the CMB is not a mystery.

‘comoving’

smooth patch

now end

Hubble length
start

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 7: Left: Evolution of the comoving Hubble radius, (aH)�1, in the inflationary universe. The

comoving Hubble sphere shrinks during inflation and expands after inflation. Inflation is

therefore a mechanism to ‘zoom-in’ on a smooth sub-horizon patch. Right: Solution of

the horizon problem. All scales that are relevant to cosmological observations today were

larger than the Hubble radius until a ⇠ 10�5. However, at su�ciently early times, these

scales were smaller than the Hubble radius and therefore causally connected. Similarly,

the scales of cosmological interest came back within the Hubble radius at relatively recent

times.

5.2 Conditions for Inflation

Via the Friedmann Equations a shrinking comoving Hubble radius can be related to the acceleration

and the the pressure of the universe

d

dt

✓
H�1

a

◆
< 0 ) d2a

dt2
> 0 ) ⇢ + 3p < 0 . (50)

The three equivalent conditions for inflation therefore are:
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Inflationary models require a clock

Original models
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Example of a “clock”
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Big success of inflation 

Quantum mechanics implies that the clock must fluctuate.

The Universe cannot be perfectly homogeneous.  

Properties of the fluctuations are consistent with our best 
observations. 

Potentially there is an additional fossil, a stochastic background 
of gravitational waves. 

Calculations are under control. 
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Effective theory of inflation: Chung, Creminelli, Fitzpatrick, Kaplan & Senatore. 0709.0293

Use the measured time in the clock as the time coordinate. 
The clock disappears from the action, everything is in the metric.  
Can still make time dependent transformations of the spatial 
coordinates but time has been fixed. Terms must respect the residual 
symmetry. 

1 Introduction

There are two kind of multifield inflation: the ones with other light fields, and the ones with
a gas of particles.

2 E�ective Field Theory of Single Clock Inflation

In this section we briefly review the e�ective action for single clock inflation. This e�ective
action was developed in [1, 2] and we refer the reader to those papers for a detailed explanation.
The construction of the e�ective theory is based on the following consideration. In a quasi
de Sitter background with only one relevant degree of freedom, there is a privileged spatial
slicing, given by the physical clock which allows us to smoothly connect to a decelerated
hot Big Bang evolution. The slicing is usually realized by a time evolving scalar ⇥(t). To
describe perturbations around this solution one can choose a gauge where the privileged slicing
coincides with surfaces of constant t, i.e. �⇥(⇣x, t) = 0. In this ‘unitary’ gauge there are no
explicit scalar perturbations, but only metric fluctuations. As time di�eomorphisms have
been fixed and are not a gauge symmetry anymore, the graviton now describes three degrees
of freedom: the scalar perturbation has been eaten by the metric. One therefore can build
the most generic e�ective action with operators that are functions of the metric fluctuations
and that are invariant under the linearly-realized time-dependent spatial di�eomorphisms. As
usual with e�ective field theories, this can be done in a low energy expansion in fluctuations
of the fields and derivatives. We obtain the following Lagrangian [1, 2]:
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where we denote by �Kµ⇥ the variation of the extrinsic curvature of constant time surfaces
with respect to the unperturbed FRW: �Kµ⇥ = Kµ⇥ � a2Hhµ⇥ with hµ⇥ being the induced
spatial metric, and where M2,3 and M̄1,2,3 represent some time-dependent mass scales.

Let us comment briefly on (1). The first term is the Eistein-Hilbert term. Together with
the second and third term, these are the only three terms starting linearly in the metric
fluctuations. The coe⌅cients have been carefully chosen to ensure that in the combination of
these three terms the linear terms in the fluctuations cancel, and the action start quadratic in
the fluctuations. The terms in the second line start quadratic in the fluctuations and there are
no derivatives acting on the metric fluctuations, while the terms in third line represent higher
derivative terms. Dots represent operators that start at higher order in the perturbations or
in derivatives. In [1] it is proven that this action for single field inflation is the most general
one and it is indeed unique.

The unitary gauge Lagrangian describes three degrees of freedom: the two graviton he-
licities and a scalar mode. This mode will become explicit after one performs a broken time
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The origin of fluctuations
The clock fluctuations are “frozen” at horizon crossing (frequency of order H). We are probing 
the theory at an energy H which is roughly constant in time.  What we observe is the 
fluctuations in the expansion of one region relative to the other due to the clock fluctuations.

During slow-roll evolution, r(N) doesn’t evolve much and one may obtain the following approximate

relation [27]
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where r(Ncmb) is the tensor-to-scalar ratio on CMB scales. Large values of the tensor-to-scalar ratio,

r > 0.01, therefore correlate with �� > Mpl or large-field inflation.

13 Primordial Spectra

The results for the power spectra of the scalar and tensor fluctuations created by inflation are
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where
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The horizon crossing condition k = aH makes (222) and (223) functions of the comoving wavenumber

k. The tensor-to-scalar ratio is
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13.1 Scale-Dependence

The scale dependence of the spectra follows from the time-dependence of the Hubble parameter and

is quantified by the spectral indices
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The first term is just �2" and the second term may be evaluated with the following result from

Appendix D
d ln "
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= 2(" � ⌘) , where ⌘ = �d ln H,�

dN
. (229)

The second factor in Eqn. (227) is evaluated by recalling the horizon crossing condition k = aH, or

ln k = N + ln H . (230)
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Amplitude of scalar and tensor fluctuations as a function of scale are 
determined by the expansion history during inflation. 

 Tensor to scalar ratio
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Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied

Planck 2015 + BICEP

12.3.2 Quantization

Each polarization of the gravitational wave is therefore just a renormalized massless field in de Sitter

space
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a
. (214)

Since we computed the power spectrum of  = v/a in the previous section, �2
 = (H/2⇡)2m we

can simply right down the answer for �2
h, the power spectrum for a single polarization of tensor

perturbations,
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Again, the r.h.s. is to be evaluated at horizon exit.

12.3.3 Power Spectrum

The dimensionless power spectrum of tensor fluctuations therefore is
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12.4 The Energy Scale of Inflation

Tensor fluctuations are often normalized relative to the (measured) amplitude of scalar fluctuations,

�2
s ⌘ �2

R ⇠ 10�9. The tensor-to-scalar ratio is
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�2
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Since �2
s is fixed and �2

t / H2 ⇡ V , the tensor-to-scalar ratio is a direct measure of the energy scale

of inflation

V 1/4 ⇠
⇣ r

0.01

⌘1/4
1016 GeV . (218)

Large values of the tensor-to-scalar ratio, r � 0.01, correspond to inflation occuring at GUT scale

energies.

12.5 The Lyth Bound

Note from Eqns. (203) and (216) that the tensor-to-scalar ratio relates directly to the evolution of

the inflaton as a function of e-folds N
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. (219)

The total field evolution between the time when CMB fluctuations exited the horizon at Ncmb and

the end of inflation at Nend can therefore be written as the following integral
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. (220)
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Observable gravity waves imply inflation 
happened around the GUT scale. 

Observable gravity waves imply super-
Planckian field excursions. �� ⇠
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Can we extrapolate from the small period we have access to all the way to the end of 
inflation?

m2�2

What is the relevant scale for the Taylor expansion? How far away from the 
minimum we have to be so the potential is no-longer a parabola?

�

Mpl

Seems to be the relevant expansion and the potential seem to become 
shallower 

1685-1731

Brook Taylor



The robust thing we are learning is if we can extrapolate from what we are measuring 60 
e-folds before the end of inflation to what happens at the end of inflation.  

         is out.  We can conclude that there is some other piece of physics playing a role 
between the minimum of the potential and 60 e-folds before the end.  This seems a very 
interesting statement to be able to make.

If tensors are well below this            we could eventually conclude that there is 
something more dramatic like a phase transition in between the observable window and 
reheating.  Although this boundary is not so sharp. 

m2�2

m2�2
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The parameters of the scalar and tensor power spectra may
be calculated approximately in the framework of the slow-roll
approximation by evaluating the following equations at the value
of the inflation field �⇤ where the mode k⇤ = a⇤H⇤ crosses the
Hubble radius for the first time. (For a nice review of the slow-
roll approximation, see for example Liddle & Lyth (1993)). The
number of e-folds before the end of inflation, N⇤, at which the
pivot scale k⇤ exits from the Hubble radius, is

N⇤ =
Z te

t⇤
dt H ⇡ 1

M2
pl

Z �e

�⇤
d�

V
V�
, (12)

where the equality holds in the slow-roll approximation, and
subscript ‘e’ refers to the end of inflation.

The coefficients of Eqs. 10 and 11 at their respective leading
orders in the slow-roll parameters are given by

As ⇡ V
24⇡2M4

pl✏V
(13)

At ⇡ 2V
3⇡2M4

pl

(14)

ns � 1 ⇡ 2⌘V � 6✏V (15)
nt ⇡ �2✏V (16)

dns/d ln k ⇡ �16✏V⌘V + 24✏2V + 2⇠2V (17)

dnt/d ln k ⇡ �4✏V⌘V + 8✏2V (18)

d2ns/d ln k2 ⇡ �192✏3V + 192✏2V⌘V � 32✏V⌘2
V

� 24✏V⇠2V + 2⌘V⇠
2
V + 2$3

V ,
(19)

where the slow-roll parameters ✏V and ⌘V are defined in Eqs. 5
and 6, and the higher order parameters are defined as follows

⇠2V =
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plV�V���
V2 , (20)

and
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plV

2
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In single field inflation with a standard kinetic term, as dis-
cussed here, the tensor spectrum shape is not independent from
the other parameters. The slow-roll paradigm implies a tensor-
to-scalar ratio, at the pivot scale, of

r =
Pt(k⇤)
PR(k⇤)

⇡ 16✏ ⇡ �8nt , (22)

referred to as the consistency relation. This consistency relation
is also useful to understand how r is connected to the evolution
of the inflaton:
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Z N
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dN
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The above relation, called the Lyth bound (Lyth, 1997), im-
plies that an inflaton variation of the order of the Planck mass
is needed to produce r & 0.01. Such a threshold is useful to
classify large and small field inflationary models with respect to
the Lyth bound.

2.3. Ending inflation and the epoch of entropy generation

The greatest uncertainty in calculating the perturbation spectrum
predicted from a particular inflationary potential arises in estab-
lishing the correspondence between the comoving wavenumber
today, and the inflaton energy density when the mode of that
wavenumber crossed the Hubble radius during inflation (Kinney
& Riotto, 2006). This correspondence depends both on the infla-
tionary model and on the cosmological evolution from the end
of inflation to the present.

After the slow-roll stage, �̈ becomes as important as the cos-
mological damping term 3H�̇. Inflation ends gradually as the
inflaton picks up kinetic energy so that w is no longer slightly
above �1, but rather far from that value. We may arbitrarily
deem that inflation ends when w = �1/3 (the value dividing
the cases of an expanding and a contracting comoving Hubble
radius), or, equivalently, at ✏V ⇡ 1, after which the epoch of
entropy generation starts. Because of couplings to other fields,
the energy initially in the form of scalar field vacuum energy
is transferred to the other fields by perturbative decay (reheat-
ing), possibly preceded by a non-perturbative stage (preheating).
There is considerable uncertainty about the mechanisms of en-
tropy generation, or thermalization, which subsequently lead to
a standard w = 1/3 equation of state for radiation.

On the other hand, if we want to identify some k⇤ today with
the value of the inflaton field at the time this scale left the hori-
zon, Eq. 12 needs to be matched to an expression that quantifies
how much k⇤ has shrunk relative to the size of the horizon be-
tween the end of inflation and the time that mode re-enters the
horizon. This quantity depends both on the inflationary potential
and the details of the entropy generation process, and is given by

N⇤ ⇡ 71.21 � ln
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(24)

where ⇢end is the energy density at the end of inflation, ⇢th is
an energy scale by which the Universe has thermalized, a0H0 is
the present horizon scale, Vhor is the potential energy when the
present horizon scale left the horizon during inflation, and wint
characterizes the effective equation of state between the end of
inflation and the energy scale specified by ⇢th. In predicting the
primordial power spectra at observable scales for a specific in-
flaton potential, this uncertainty in the reheating history of the
Universe becomes relevant and can be taken into account by al-
lowing N⇤ to vary over a range of values. Note that wint is not
intended to provide a detailed model for entropy generation, but
rather to parameterize the uncertainty regarding the expansion
rate of the Universe during this intermediate era. Nevertheless,
constraints on wint provide observational limits on the uncertain
physics during this period.

The first two terms of Eq. 24 are model independent, with
the second term being roughly 5 for k⇤ = 0.05 Mpc�1. If ther-
malization occurs rapidly, or if the reheating stage is close to
radiation-like, the magnitude of the last term in Eq. 24 is . 1.
For most reasonable inflation models, the fourth term isO(1) and
the third term ⇠ �10, motivating the commonly assumed range
50 < N⇤ < 60. Nonetheless, more extreme values on both ends
are in principle possible (Liddle & Leach, 2003). In the figures
of Sect. 4 we will mark the range 50 < N⇤ < 60 to guide the
reader’s eye.

28.4.1 No Shift Symmetry

In the absence of any special symmetries, the potential in large-field inflation becomes sensitive

to an infinite series of Planck-suppressed operators. The physical interpretation of these terms

is as follows: as the inflaton expectation value changes, any other fields � to which the inflaton

couples experience changes in mass, self-coupling, etc. In particular, any field coupled with at least

gravitational strength to the inflaton experiences significant changes when the inflaton undergoes a

super-Planckian excursion. These variations of the � masses and couplings in turn feed back into

changes of the inflaton potential and therefore threaten to spoil the delicate flatness required for

inflation. Note that this applies not just to the light degrees of freedom, but even to fields with

masses near the Planck scale: integrating out Planck-scale degrees of freedom generically (i.e., for

couplings of order unity) introduces Planck-suppressed operators in the e↵ective action. For nearly

all questions in particle physics, such operators are negligible, but in inflation they play an important

role.

The particular operators which appear are determined, as always, by the symmetries of the low-

energy action. As an example, imposing only the symmetry � ! �� on the inflaton leads to the

following e↵ective action:
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Unless the UV theory enjoys further symmetries, one expects that the coe�cients �p and ⌫p are of

order unity. Thus, whenever � traverses a distance of order Mpl in a direction that is not protected

by a suitably powerful symmetry, the e↵ective Lagrangian receives substantial corrections from an

infinite series of higher-dimension operators. In order to have inflation, the potential should of

course be approximately flat over a super-Planckian range. If this is to arise by accident or by fine-

tuning, it requires a conspiracy among infinitely many coe�cients, which has been termed ‘functional

fine-tuning’ (compare this to the eta problem which only requires tuning of one mass parameter).

28.4.2 Shift Symmetry

There is a sensible way to control this infinite series of corrections: one can invoke an approximate

symmetry that forbids the inflaton from coupling to other fields in any way that would spoil the

structure of the inflaton potential. Such a shift symmetry,

� ! � + const. , (358)

protects the inflaton potential in a natural way.

In the case with a shift symmetry, the action of chaotic inflation [108]

Le↵(�) = �1

2
(@�)2 � �p �p , (359)

with small coe�cient �p is ‘technically natural’. However, because we require that this symmetry

protects the inflaton even from couplings to Planck-scale degrees of freedom, it is essential that

the symmetry should be approximately respected by the Planck-scale theory – in other words, the
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fine-tuning’ (compare this to the eta problem which only requires tuning of one mass parameter).

28.4.2 Shift Symmetry

There is a sensible way to control this infinite series of corrections: one can invoke an approximate

symmetry that forbids the inflaton from coupling to other fields in any way that would spoil the

structure of the inflaton potential. Such a shift symmetry,

� ! � + const. , (358)

protects the inflaton potential in a natural way.

In the case with a shift symmetry, the action of chaotic inflation [108]

Le↵(�) = �1

2
(@�)2 � �p �p , (359)

with small coe�cient �p is ‘technically natural’. However, because we require that this symmetry

protects the inflaton even from couplings to Planck-scale degrees of freedom, it is essential that

the symmetry should be approximately respected by the Planck-scale theory – in other words, the
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Shift symmetry forbids these terms

Symmetry needs to be respected by quantum gravity
For a while there were no example in ST so it was conjectured that 
you could not get gravity waves. 
Now there is a counter example: axion monodromy

During slow-roll evolution, r(N) doesn’t evolve much and one may obtain the following approximate

relation [27]

��

Mpl
= O(1) ⇥

⇣ r

0.01

⌘1/2
, (221)

where r(Ncmb) is the tensor-to-scalar ratio on CMB scales. Large values of the tensor-to-scalar ratio,

r > 0.01, therefore correlate with �� > Mpl or large-field inflation.

13 Primordial Spectra

The results for the power spectra of the scalar and tensor fluctuations created by inflation are

�2
s (k) ⌘ �2

R(k) =
1

8⇡2

H2

M2
pl

1

"

�����
k=aH

, (222)

�2
t (k) ⌘ 2�2

h(k) =
2

⇡2

H2

M2
pl

�����
k=aH

, (223)

where

" = �d ln H

dN
. (224)

The horizon crossing condition k = aH makes (222) and (223) functions of the comoving wavenumber

k. The tensor-to-scalar ratio is

r ⌘ �2
t

�2
s

= 16 "? . (225)

13.1 Scale-Dependence

The scale dependence of the spectra follows from the time-dependence of the Hubble parameter and

is quantified by the spectral indices

ns � 1 ⌘ d ln �2
s

d ln k
, nt ⌘ d ln �2

t

d ln k
. (226)

We split this into two factors
d ln �2

s

d ln k
=

d ln �2
s

dN
⇥ dN

d ln k
. (227)

The derivative with respect to e-folds is

d ln �2
s

dN
= 2

d ln H

dN
� d ln "

dN
. (228)

The first term is just �2" and the second term may be evaluated with the following result from

Appendix D
d ln "

dN
= 2(" � ⌘) , where ⌘ = �d ln H,�

dN
. (229)

The second factor in Eqn. (227) is evaluated by recalling the horizon crossing condition k = aH, or

ln k = N + ln H . (230)
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Single time scale histories
Changes over one e-fold

✏Ḣ = | Ḧ

HḢ
|

✏H = | Ḣ

HH
|

✏X = | Ẋ

HX
|

If both are of the same size then the 
gravitational wave contribution is substantial. 

Of course it is easy to open a hierarchy between these 
two parameters.  

H(t) = H? +�H(t/t?)

�H ⇠ 1/t? ! ✏H ⇠ ✏2
Ḣ

✏H
✏Ḣ

⇠ �H

H?

r = 16✏H
ns � 1 = �2✏H + ✏Ḣ
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Implications of the scalar tilt for the tensor-to-scalar ratio
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We investigate the possible implications of the measured value of the scalar tilt ns for the tensor-
to-scalar ratio r in slow-roll, single-field inflationary models. The measured value of the tilt satisfies
ns � 1 ⇠ 1/N⇤, where N⇤ ⇠ 60 is the number of e-folds for observationally relevant scales. If this
is not a coincidence and the scaling holds for di↵erent values of N , it strongly suggests that either
r is as big as 10�1, or smaller than 10�2 and exponentially dependent on ns. A large region of the
(ns,r)-plane is not compatible with this scaling.

Introduction.—Planck confirmed previous indications
that the spectrum of scalar perturbations is not scale
invariant: ns � 1 = �0.0397 ± 0.0073 at 1� [1]
(�0.0329 ± 0.0069 in the reanalysis of [2]). This is
surely an important step in the understanding of the
early universe: inflation generically predicts a deviation
from scale-invariance, although the magnitude is, as we
will discuss, model-dependent. The experimental value
of |ns � 1| is of order 1/N⇤ ' 0.017, where N⇤ is the
number of e-folds to the end of inflation for observation-
ally relevant scales (we are going to take N⇤ = 60 for
definiteness). This did not have to be the case: it is easy
to find models on the market with |ns � 1| much bigger,
say 0.2 (of course the slow-roll approximation requires
the tilt to be much smaller than 1), or much smaller, say
10�4. For example in the prototypical hybrid inflation
model

V =
1

2
m2�2 +

1

4
�( 2 �M2)2 + �0�2 2 (1)

the tilt is ns�1 ' 2⌘ = (2m2M2
P)/V0, where V0 = 1

4�M
4

is the vacuum energy during inflation, before the field  
relaxes to the true minimum. The tilt is a constant that
does not depend on N : it can be much smaller or much
larger than 1/N . (In this example the tilt is positive,
but the same applies to inverted hybrid models with red
tilt.) In this kind of models, the inflaton “does not know”
when inflation is going to end, i.e. when the waterfall
field  will become tachyonic. Thus there is no relation
between the tilt, which only depends on the derivatives
of the potential at a given point, and N , which measures
the distance to the end of inflation. The approximate
equality ns � 1 ⇠ 1/N could just be an accident.

On the other hand in this note we want to take this
indication seriously and see what are the implications on
inflation, and in particular on the expected amount of

gravitational waves. Our formulae will be similar to [3]
and [4] (see also [5] and [6]) although the implications we
will draw will be slightly di↵erent.

Main argument.— The experimental value of the scalar
tilt suggests

ns � 1 = � ↵

N
(2)

with ↵ of order unity. We assume the equation above to
be valid in a window which is comfortably larger than
the observable one: in other words the same equation
would hold if one were to measure perturbations at, say,
N = 10 or N = 200 instead of N = 60. For the time
being we assume ↵ is strictly a constant and later dis-
cuss deviations from this assumption. Writing the tilt
in terms of ✏ ⌘ �Ḣ/H2 and its derivative, the equation
above becomes (at first order in slow-roll) a di↵erential
equation for ✏

ns � 1 = �2✏+
d log ✏

dN
= � ↵

N
. (3)

This is easily integrated to give

✏(N) =
1

2(↵� 1)�1N +AN↵
, (4)

with A an integration constant. By a judicious choice
of A one can choose any value for ✏ (and thus for r) at
N⇤ = 60. However the scaling (2) says that there is noth-
ing special at the scale N⇤ = 60 we measure, therefore it
looks reasonable to further assume that, in a certain win-
dow which encompasses the observable 60 e-folds, only
one of the two power laws in the denominator of (4) dom-
inates. Conversely N⇤ = 60 would be accidentally close
to the transition point between the two regimes. Within
this assumption one has two di↵erent cases depending on

r = 16✏
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Tensors from Planck + BICEP 
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Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied

Planck 2015 + BICEP

12.3.2 Quantization

Each polarization of the gravitational wave is therefore just a renormalized massless field in de Sitter

space

hs
k

=
2

Mpl
 s
k

,  s
k

⌘ v
k

a
. (214)

Since we computed the power spectrum of  = v/a in the previous section, �2
 = (H/2⇡)2m we

can simply right down the answer for �2
h, the power spectrum for a single polarization of tensor

perturbations,

�2
h(k) =

4

M2
pl

✓
H?

2⇡

◆2

. (215)

Again, the r.h.s. is to be evaluated at horizon exit.

12.3.3 Power Spectrum

The dimensionless power spectrum of tensor fluctuations therefore is

�2
t = 2�2

h(k) =
2

⇡2
H2
?

M2
pl

. (216)

12.4 The Energy Scale of Inflation

Tensor fluctuations are often normalized relative to the (measured) amplitude of scalar fluctuations,

�2
s ⌘ �2

R ⇠ 10�9. The tensor-to-scalar ratio is

r ⌘ �2
t (k)

�2
s (k)

. (217)

Since �2
s is fixed and �2

t / H2 ⇡ V , the tensor-to-scalar ratio is a direct measure of the energy scale

of inflation

V 1/4 ⇠
⇣ r

0.01

⌘1/4
1016 GeV . (218)

Large values of the tensor-to-scalar ratio, r � 0.01, correspond to inflation occuring at GUT scale

energies.

12.5 The Lyth Bound

Note from Eqns. (203) and (216) that the tensor-to-scalar ratio relates directly to the evolution of

the inflaton as a function of e-folds N

r =
8
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pl
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dN

◆2

. (219)

The total field evolution between the time when CMB fluctuations exited the horizon at Ncmb and

the end of inflation at Nend can therefore be written as the following integral

��

Mpl
=

Z N
cmb

N
end

dN

r
r

8
. (220)
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Observable gravity waves imply inflation 
happened around the GUT scale. 

Observable gravity waves imply super-
Planckian field excursions. �� ⇠

⇣ r
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Experiments are testing very interesting values.

We can expect important progress in the relatively near future. 

If we do not see tensor modes in this range we will effectively 
loose the connection between ns and the number of e-folds.  

Tensor modes



1. The seeds are primordial

Fossils from before the Hot Big Bang

2. Amplitude:

3. Slope:

lnAs = �19.932± 0.034

1� ns = 0.0355± 0.0049

4. No gravitational waves (10 percent level)

5. No fluctuation in composition (percent level)

6. No departures from Gaussianity Non�Gaussian

Gaussian

< 10

�3 � 10

�4
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to some arbitrarily chosen scale kNL. Theoretical errors
e↵ectively restrict the range of useful modes to those for
which the signal dominates over the theoretical uncer-
tainty. In this way the realistic kmax can be surprisingly
lower than kNL and this reduction of the number modes
leads to bigger uncertainties on inferred parameters.

We will describe in detail how to consistently calculate
the Fisher matrix including the theoretical uncertainties.
We will apply this general framework to measurements
of the sum of neutrino masses and primordial NG (for
a similar earlier study for the case of neutrino mass see
[11]). Obtaining realistic and very precise forecasts, par-
ticularly for very high redshift surveys, is beyond the
scope of this paper. Our primary goal is to study the
e↵ect of theoretical uncertainties on the amount of use-
ful information in a given volume. We will therefore use
simple analytical models whenever possible and assume
ideal surveys. In this sense our final results are opti-
mistic, but nevertheless give a very good estimate of how
much theoretical errors degrade the constraints.

Before moving to the more systematic treatment, in
the rest of this section we motivate the basic idea in the
example of equilateral NG.

A. Example of Equilateral NG

Primordial NG are important observables because they
contain information about the very early phases of cos-
mic evolution. The current upper bounds on the most
interesting equilateral and local shapes are [12]

f loc.
NL = 0.8± 5.0 , f eq.

NL = �4± 43 , (68% CL) . (1)

Even though these upper limits are quite strong, a theo-
retically interesting threshold is fNL ⇠ 1. Any detection
of non-zero NG would be very exciting, but even the ob-
servation that both f loc.

NL and f eq.
NL are smaller than one

would be very informative. It would favor single-field and
slow-roll inflation and practically rule out a large class of
inflationary models with modified kinetic term or more
than one light field during inflation. Although futuris-
tic experiments including polarization have a potential
to improve the current constraints almost by a factor of
2 (see for example [13]), it will be hard to reach fNL ⇠ 1
from the CMB alone.

The other way to detect primordial NG is through its
imprint on the bispectrum of density fluctuations in the
late universe. The full bispectrum B(k1,k2,k3) of the
density contrast � is a sum of the primordial part and
the one generated by the gravitational interactions. For
simplicity, let us focus on redshift z = 0 and assume that
all momenta in the bispectrum are of the same magnitude
k. The primordial contribution is approximately

Beq.(k) ⇠ P 2(k) · f eq.
NL

9H2
0⌦m

k2T (k)D+(0)
, (2)

where T (k) is the transfer function, H0 the present day
value of the Hubble constant, ⌦m the matter density pa-

rameter and D+(z) the perturbation growth factor. The
gravitational part can be calculated using perturbation
theory. If one calculates the bispectrum including (l� 1)
loops, the result can be schematically written as

Bgrav.(k) ⇠ P 2(k) [“(l � 1)�loop” + E(l, k)] , (3)

where the second term is the theoretical error. As we
discussed, the typical size of this error is E(l, k) =
O((k/kNL)(3+n)l). Notice that for the leading tree-level
bispectrum the first term in square brackets is O(1).
From the previous expressions it is clear that while the

theoretical error grows, the primordial part decays with
k. We are interested in the scale kmax for which they
become comparable. This scale sets the range of modes
that we are allowed to use in the analysis:

f eq.
NL

9H2
0⌦m

k2maxT (kmax)D+(0)
⇠

✓
kmax

kNL

◆(3+n)l

. (4)

For example, if we calculate the 1-loop bispectrum (cor-
responding to l = 2 for the error), for a target of f eq.

NL ⇠ 1
it turns out that kmax = 0.03 hMpc�1. This is quite
smaller than the naive cuto↵ kNL and deep in the per-
turbative regime. On second thought, this result should
not be so surprising. For the given kmax and f eq.

NL ⇠ 1 the
relative size of primordial part is

f eq.
NL

9H2
0⌦m

k2maxT (kmax)D+(0)
⇠ O(10�3) , (5)

which should be compared with the O(1) gravitational
contribution in Eq. (3). To get this precision on the
gravitational bispectrum one has to stay far away from
the nonlinear scale. This precision is an order of mag-
nitude smaller than the usual theoretical target, which
is O(1%). This is true for perturbation theory as well
as for simulations. In order to be useful for detection
of small equilateral NG, the theoretical models have to
significantly improve.
So far we were just comparing primordial and grav-

itational signal to estimate kmax. It is interesting to
ask whether f eq.

NL ⇠ 1 is even achievable with kmax =
0.03 h/Mpc�1 and what kind of survey volume is needed.
To find the answer we have to calculate the signal-to-
noise, which is given by

✓
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N

◆2

=
V 2

(2⇡)6

Z
d3k1d

3k2d
3k3

Beq.(k1,k2,k3)2

P (k1)P (k2)P (k3)

⇡ V

(2⇡)3
k3maxf

eq.
NL

2A · O(1) ,

(6)

where A = 2.215 · 10�9 is the normalization of the power
spectrum. This can be rewritten as �(f eq.

NL) ⇠ 2·104/pN ,
where N = (kmax/kmin)3 is the number of modes. With
NG of order unity we naively get kmin ⇠ 10�3kmax which,
for the above estimate of kmax, corresponds to unobserv-
able super-horizon scales.

(Departure from scale-invariance)
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1 Introduction

There are two kind of multifield inflation: the ones with other light fields, and the ones with
a gas of particles.

2 E�ective Field Theory of Single Clock Inflation

In this section we briefly review the e�ective action for single clock inflation. This e�ective
action was developed in [1, 2] and we refer the reader to those papers for a detailed explanation.
The construction of the e�ective theory is based on the following consideration. In a quasi
de Sitter background with only one relevant degree of freedom, there is a privileged spatial
slicing, given by the physical clock which allows us to smoothly connect to a decelerated
hot Big Bang evolution. The slicing is usually realized by a time evolving scalar ⇥(t). To
describe perturbations around this solution one can choose a gauge where the privileged slicing
coincides with surfaces of constant t, i.e. �⇥(⇣x, t) = 0. In this ‘unitary’ gauge there are no
explicit scalar perturbations, but only metric fluctuations. As time di�eomorphisms have
been fixed and are not a gauge symmetry anymore, the graviton now describes three degrees
of freedom: the scalar perturbation has been eaten by the metric. One therefore can build
the most generic e�ective action with operators that are functions of the metric fluctuations
and that are invariant under the linearly-realized time-dependent spatial di�eomorphisms. As
usual with e�ective field theories, this can be done in a low energy expansion in fluctuations
of the fields and derivatives. We obtain the following Lagrangian [1, 2]:

SE.H. + S.F. =

�
d4x

⇥
�g

⇥1

2
M2

PlR + M2
PlḢg00 �M2

Pl(3H
2 + Ḣ) +

+
1

2!
M2(t)

4(g00 + 1)2 +
1

3!
M3(t)

4(g00 + 1)3 +

�M̄1(t)3

2
(g00 + 1)�Kµ

µ �
M̄2(t)2

2
�Kµ

µ
2 � M̄3(t)2

2
�Kµ

⇥�K
⇥
µ + ...

⇤
, (1)

where we denote by �Kµ⇥ the variation of the extrinsic curvature of constant time surfaces
with respect to the unperturbed FRW: �Kµ⇥ = Kµ⇥ � a2Hhµ⇥ with hµ⇥ being the induced
spatial metric, and where M2,3 and M̄1,2,3 represent some time-dependent mass scales.

Let us comment briefly on (1). The first term is the Eistein-Hilbert term. Together with
the second and third term, these are the only three terms starting linearly in the metric
fluctuations. The coe⌅cients have been carefully chosen to ensure that in the combination of
these three terms the linear terms in the fluctuations cancel, and the action start quadratic in
the fluctuations. The terms in the second line start quadratic in the fluctuations and there are
no derivatives acting on the metric fluctuations, while the terms in third line represent higher
derivative terms. Dots represent operators that start at higher order in the perturbations or
in derivatives. In [1] it is proven that this action for single field inflation is the most general
one and it is indeed unique.

The unitary gauge Lagrangian describes three degrees of freedom: the two graviton he-
licities and a scalar mode. This mode will become explicit after one performs a broken time

2

This Lagrangian is not quadratic, there are interactions. 

There is a minimum level of interactions coming from the terms that are 
fixed by the cosmic history. This level is small but not minuscule. 
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Order one coupling
for a Hubble time

lnAs = �19.932± 0.034

Interactions produce a 4 x 10-5 corrections to what was already there. 
Detection requires 109 modes

⇣out ⇠ 10�9

⇣ in ⇠ 4⇥ 10�5

⇣ in ⇠ 4⇥ 10�5

Higher order moments

ds
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lnAs = �19.932± 0.034

⇣out ⇠ 10�9

⇣ in ⇠ 4⇥ 10�5

⇣ in ⇠ 4⇥ 10�5

Higher order moments

Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

good indication that no spurious NG features are present in the
actual data set when compared to our simulations. It should be
noted that we found a similarly good level of agreement between
estimators for the non-primordial shapes of point sources and
ISW-lensing, although we chose not to present those results here
in order to focus on the primordial shapes. Finally, regarding the
wavelet pipeline, the lower weight correlation and suboptimal
error bars produce an expected larger scatter when compared to
the other estimators. Nonetheless, the level of agreement is still
of order 1�, which is quite acceptable for consistency checks of
the optimal results. Again, this MC expectation agrees with what
we see in our results on the real data.

7. Results

For our analysis of Planck data we considered foreground-
cleaned maps obtained with the four component separation
methods SMICA, NILC, SEVEM, and C-R. For each map, fNL
amplitudes for the local, equilateral, and orthogonal primordial
shapes have been measured using three (four for SMICA) bispec-
trum estimators described in Sect. 3. The results can be found
in Sect. 7.1. These estimators, as explained earlier, basically use
an expansion of the theoretical bispectrum templates in di↵erent
domains, and truncate the expansion when a high level of corre-
lation with the primordial templates is achieved. These accurate
decompositions, which are highly correlated with each other, are
then matched to the data in order to extract fNL. The di↵erent
expansions are all di↵erent implementations of the maximum-
likelihood estimator given in Eq. (32). So the final estimates are
all expected to be optimal, and measure fNL from nearly identi-
cal fitting templates. As discussed and tested in detail on simu-
lations in Sect. 6, central fNL values from di↵erent methods are
expected to be consistent with each other within about 0.3� fNL .
It is then clear that comparing outputs from both di↵erent esti-
mators and di↵erent component separation methods, as we do,
allows for stringent internal consistency checks and improved
robustness of the final fNL results.

In addition, the binned and modal techniques produce shape-
independent full bispectrum reconstructions in their own di↵er-
ent domains. These reconstructions, discussed in Sect. 7.2, com-
plement the standard fNL measurements in an important way,
since they allow detection of possible NG features in the three-
point function of the data that do not correlate significantly with
the standard primordial shapes. This advantage is shared by the
skew-C` method, also applied to the data. A detection of such
features would either produce a warning that some residual spu-
rious NG e↵ects are still present in the data or provide an in-
teresting hint of “non-standard” primordial NG that is not cap-
tured by the local, equilateral and orthogonal shapes. Additional
constraints for a broad range of specific models are provided
in Sect. 7.3 (see also Sect. 2.3). In Sect. 7.4 we present the
constraints on local NG obtained with Minkowski Functionals.
Finally, in Sect. 7.5 we present our CMB trispectrum results.

7.1. Constraints on local, equilateral and orthogonal fNL

Our goal here is to investigate the standard separable local, equi-
lateral and orthogonal templates used e.g., in previous WMAP
analyses (see e.g., Bennett et al. 2012). When using the modal,
binned, or wavelet estimator, these theoretical templates are ex-
panded approximately (albeit very accurately) using the relevant
basis functions or bins. On the other hand, the KSW estimator by
construction works with the exact templates and, for this reason,
it is chosen as the baseline to provide the final fNL results for

Table 8. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL .

Independent ISW-lensing subtracted

KSW KSW

SMICA

Local . . . . . . . . . 9.8 ± 5.8 2.7 ± 5.8

Equilateral . . . . . �37 ± 75 �42 ± 75

Orthogonal . . . . . �46 ± 39 �25 ± 39

the standard shapes (local, equilateral, orthogonal), see Table 8.
However, both the binned and modal estimators achieve opti-
mal performance and an extremely high correlation for the stan-
dard templates (⇠ 99%), so they are statistically equivalent to
KSW, as demonstrated in the previous section. This means that
we can achieve a remarkable level of cross-validation for our
Planck NG results. We will be able to present consistent con-
straints for the local, equilateral and orthogonal models for all
four Planck foreground-cleaned maps, using three independent
optimal estimators (refer to Table 9). Regarding component sep-
aration methods, we adopt the SMICA map as the default for the
final KSW results given its preferred status among foreground-
separation techniques in Planck Collaboration XII (2013). The
other component separation maps will be used for important
cross-validation of our results and to evaluate potential sensi-
tivity to foreground residuals.

All the results presented in this Section were obtained using
the union mask U73, which leaves 73% of the sky unmasked.
The mask is the union of the confidence masks of the four di↵er-
ent component separation methods, where each confidence mask
defines the region where the corresponding CMB cleaning is
trusted (see Planck Collaboration XII 2013). As will be shown in
Sect. 8.2, results are robust to changes that make the mask larger,
but choosing a significantly smaller mask would leave some NG
foreground contamination. For the linear term CMB and noise
calibration, and error bar determination, we used sets of realistic
FFP6 maps that include all steps of data processing, and have
realistic noise and beam properties (Planck Collaboration ES
2013). The simulations were also lensed using the Lenspix al-
gorithm and filtered through the component separation pipelines.

In Table 8 we show results for the combination of the KSW
estimator and the SMICA map, at a resolution of `max = 2500.
We present both “independent” single-shape results and “ISW-
lensing subtracted” ones. The former are obtained by directly
fitting primordial templates to the data. For the latter, two ad-
ditional operations have been performed. In the first place, as
the name indicates, they have been corrected by subtracting
the bias due to the correlation of the primordial bispectra to
the late-time ISW-lensing contribution (Mangilli & Verde 2009;
Junk & Komatsu 2012; Hanson et al. 2009b, see Sect. 5.2). In
addition, a joint fit of the primordial shape with the (Poissonian)
point source bispectrum amplitude extracted from the data
has been performed on the results marked “ISW-lensing sub-
tracted”.10 Since the ISW-lensing bispectrum is peaked on

10 More precisely, in the subtracted ISW-lensing results the equilateral
and orthogonal primordial shapes are also fitted jointly, although this
has a nearly negligible impact on the final result because the two shapes
are by construction nearly perfectly uncorrelated.
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The origin of the seeds of structure

The fact that the seeds for structure formation are primordial in well 
established.  After such impressive data,  the idea that the fluctuations were 
generated during a period of de-Sitter like expansion has survived impressive 
tests.  The firm detection of a non-zero slope for the power spectrum is a 
stunning success of both the idea and the experiments.* 

The idea that the source of fluctuations are vacuum fluctuations of a slowly 
rolling scalar field which served as the clock that determined when inflation 
ends (ie slow-roll inflation) is much less well established. It is only tested 
through our study of non-Gaussianities. In this area Planck has made 
tremendous progress.  After Planck we can say that this idea has survived 
non-trivial tests.  However a significant fraction of parameter space is still 
unexplored. 
 

* What about the “anomalies”? And what should I make of the Bianchi VII stuff?



Did super-horizon modes  ever produce locally observable 
differences that modulate the equation of state?

Were fluctuations converted into curvature fluctuations at 
the beginning/during the hot big bang? 

“Inflation” Hot Big Bang - Radiation era

TodayDecouplingBBN

Reheating

Anything interesting here?
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Robust signature: Local non-Gaussianty

The conversion into curvature perturbations happens outside the horizon. 
Gradients are negligible and thus it leads to local type of non-Gaussianity. 

Modulate the equation of state:

p(⇢) = p̄(⇢) + �p(�)

⇣(x) =
1

6

��

�

There are many contributions to the non-linearities. Friedman equation, relation 
between field and the change in the equation of state, etc. 

Only part of the pressure is modulated. Mechanism need not be perfectly efficient. 

Examples, translation between decay rate and expansion or fractional contribution to 
the energy density by the curvaton. 

⇣(x) = f(�(x)) = ✏(� + ↵�

2 + · · · ) f local

NL

⇠ 1

✏
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where A = �(c2
s + (2/3)c̃3), and the coe�cients are com-

puted from the Fisher correlation matrix between the equilat-
eral and orthogonal template bispectra and the theoretical bis-
pectra arising from the two operators ⇡̇(r⇡)2 and ⇡̇3. Given
our constraints on f equil

NL and f ortho
NL , and the covariance matrix

C of the joint estimators, we can define a �2 statistic given by
�2(c̃3, cs) = uT (c̃3, cs)C�1u(c̃3, cs), where the vector u is given
by vi(c̃3, cs) = f i(c̃3, cs) � f i

P. f i
P, where i={equilateral, orthogo-

nal}, are the joint estimates of the equilateral and orthogonal fNL
measured by Planck and f i(c̃3, cs) is given by Eq. (98). Figure 22
shows the 68%, 95%, and99.7% confidence regions for f equil

NL and
f ortho
NL , obtained by requiring �2  2.28, 5.99, and 11.62 respec-

tively, as appropriate for a �2 variable with two degrees of free-
dom. The corresponding confidence regions in the (c̃3, cs) pa-
rameter space are shown in Fig. 23. After marginalizing over c̃3
we find the following conservative bound on the inflaton sound-
speed

cs � 0.02 95% CL . (99)

Note that we have also looked explicitly for the non-separable
shapes in Sect. 7.3.1, in particular the two e↵ective field theory
shapes and the DBI inflation shape (see Eqs. (5, 6, 7)) .

9.3. Multi-field models

Curvaton models: Planck NG constraints have interesting im-
plications for the simplest adiabatic curvaton models. They pre-
dict (Bartolo et al. 2004d,c)

f local
NL =

5
4rD
� 5rD

6
� 5

3
, (100)

for a quadratic potential of the curvaton field (Lyth & Wands
2002; Lyth et al. 2003; Lyth & Rodriguez 2005; Sasaki et al.
2006), where rD = [3⇢curvaton/(3⇢curvaton + 4⇢radiation)]D is the
“curvaton decay fraction” evaluated at the epoch of the curva-
ton decay in the sudden decay approximation. Assuming a prior
0 < rD < 1, given our constraint f local

NL = 2.7 ± 5.8 at 68% CL,
we obtain

rD � 0.15 95% CL . (101)

In Planck Collaboration XXII (2013) a limit on rD is derived
from the constraints on isocurvature perturbations under the as-
sumption that there is some residual isocurvature fluctuations in
the curvaton field. For this restricted case, they find rD > 0.98
(95% CL), compatible with the constraint obtained here.

Quasi-single field inflation: It is beyond the scope of this pa-
per to perform a general multi-field analysis employing the local
NG constraints. However, we have performed a detailed anal-
ysis for the quasi-single field models (see Eq. (12)). Quasi-
single field (QSF) inflation models (Chen & Wang 2010b,a;
Baumann & Green 2012) are a natural consequence of inflation
model-building in string theory and supergravity (see Sect. 2.2).
In addition to the inflaton field, these models have extra fields
with masses of order the Hubble parameter, which are stabilized
by supersymmetry. A distinctive observational signature of these
massive fields is a one-parameter family of large NG whose
squeezed limits interpolate between the local and the equilat-
eral shape. Therefore, by measuring the precise momentum-
dependence of the squeezed configurations in the NG, in prin-
ciple, we are directly measuring the parameters of the theory
naturally determined by the fundamental principle of supersym-
metry. These models produce a bispectrum (Eq. (12)) depending
on two parameters ⌫, f QSI

NL , with a shape that interpolates between
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Fig. 24. 68%, 95%, and 99.7% confidence intervals for ⌫ and
f QSI
NL for quasi-single field inflation. The best fit value of ⌫ = 1.5,

f QSI
NL = 4.75 is marked with an X. The contours were calculated

using MC methods by creating 2 ⇥ 109 simulations using the �
covariance matrix around this best fit model.

the local shape, where ⌫ = 1.5 and the equilateral shape, where
⌫ = 0.

Results are shown in Fig. 24 (see Sect. 7.3.6 for details of
the analyses). The best fit value corresponds to ⌫ = 1.5, fNL =
4.79 which would imply, within this scenario, that the extra field
di↵erent from the inflaton has a mass m ⌧ H. However, the
figure shows that there is no preferred value for ⌫ with all values
allowed at 3�.

Alternatives to inflation: Perhaps the most striking example is
given by the ekpyrotic/cyclic models (for a review, see Lehners
2010) proposed as alternative to inflationary models. Typically
they predict a local NG | f local

NL | > 10. In particular, the so-called
“ekpyrotic conversion” mechanism (in which isocurvature per-
turbations are converted into curvature perturbations during the
ekpyrotic phase) yields f local

NL = �(5/12) c2
1, where c1 is a param-

eter in the potential, requiring 10 & c1 & 20 for compatibility
with power spectrum constraints. This case was ⇠ 4� discrepant
with WMAP data, and with Planck it is decisively ruled out given
our bounds f local

NL = 2.7 ± 5.8 at 68% CL (see Table 9) yield-
ing c1  4.2 at 95% CL. The predictions for the local bispec-
trum from other ekpyrotic models (based on the so called “ki-
netic conversion” taking place after the ekpyrotic phase) yield
f local
NL = (3/2) 3

p
✏+5, where ✏ ⇠ 100 is natural (Lehners 2010).

Assuming a prior �1 < 3 < 5, we obtain �0.8 < 3 < 0.5 at
95% CL, dramatically restricting the viable parameter space of
this model.

9.4. Non-standard inflation models

Constraints on excited initial states: Results from Sect. 7.3 con-
strain a variety of models with flattened bispectra, often in
combination with a non-trivial squeezed limit. The most no-
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where A = �(c2
s + (2/3)c̃3), and the coe�cients are com-

puted from the Fisher correlation matrix between the equilat-
eral and orthogonal template bispectra and the theoretical bis-
pectra arising from the two operators ⇡̇(r⇡)2 and ⇡̇3. Given
our constraints on f equil

NL and f ortho
NL , and the covariance matrix

C of the joint estimators, we can define a �2 statistic given by
�2(c̃3, cs) = uT (c̃3, cs)C�1u(c̃3, cs), where the vector u is given
by vi(c̃3, cs) = f i(c̃3, cs) � f i

P. f i
P, where i={equilateral, orthogo-

nal}, are the joint estimates of the equilateral and orthogonal fNL
measured by Planck and f i(c̃3, cs) is given by Eq. (98). Figure 22
shows the 68%, 95%, and99.7% confidence regions for f equil

NL and
f ortho
NL , obtained by requiring �2  2.28, 5.99, and 11.62 respec-

tively, as appropriate for a �2 variable with two degrees of free-
dom. The corresponding confidence regions in the (c̃3, cs) pa-
rameter space are shown in Fig. 23. After marginalizing over c̃3
we find the following conservative bound on the inflaton sound-
speed

cs � 0.02 95% CL . (99)

Note that we have also looked explicitly for the non-separable
shapes in Sect. 7.3.1, in particular the two e↵ective field theory
shapes and the DBI inflation shape (see Eqs. (5, 6, 7)) .

9.3. Multi-field models

Curvaton models: Planck NG constraints have interesting im-
plications for the simplest adiabatic curvaton models. They pre-
dict (Bartolo et al. 2004d,c)
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for a quadratic potential of the curvaton field (Lyth & Wands
2002; Lyth et al. 2003; Lyth & Rodriguez 2005; Sasaki et al.
2006), where rD = [3⇢curvaton/(3⇢curvaton + 4⇢radiation)]D is the
“curvaton decay fraction” evaluated at the epoch of the curva-
ton decay in the sudden decay approximation. Assuming a prior
0 < rD < 1, given our constraint f local

NL = 2.7 ± 5.8 at 68% CL,
we obtain

rD � 0.15 95% CL . (101)

In Planck Collaboration XXII (2013) a limit on rD is derived
from the constraints on isocurvature perturbations under the as-
sumption that there is some residual isocurvature fluctuations in
the curvaton field. For this restricted case, they find rD > 0.98
(95% CL), compatible with the constraint obtained here.

Quasi-single field inflation: It is beyond the scope of this pa-
per to perform a general multi-field analysis employing the local
NG constraints. However, we have performed a detailed anal-
ysis for the quasi-single field models (see Eq. (12)). Quasi-
single field (QSF) inflation models (Chen & Wang 2010b,a;
Baumann & Green 2012) are a natural consequence of inflation
model-building in string theory and supergravity (see Sect. 2.2).
In addition to the inflaton field, these models have extra fields
with masses of order the Hubble parameter, which are stabilized
by supersymmetry. A distinctive observational signature of these
massive fields is a one-parameter family of large NG whose
squeezed limits interpolate between the local and the equilat-
eral shape. Therefore, by measuring the precise momentum-
dependence of the squeezed configurations in the NG, in prin-
ciple, we are directly measuring the parameters of the theory
naturally determined by the fundamental principle of supersym-
metry. These models produce a bispectrum (Eq. (12)) depending
on two parameters ⌫, f QSI

NL , with a shape that interpolates between
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Fig. 24. 68%, 95%, and 99.7% confidence intervals for ⌫ and
f QSI
NL for quasi-single field inflation. The best fit value of ⌫ = 1.5,
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using MC methods by creating 2 ⇥ 109 simulations using the �
covariance matrix around this best fit model.

the local shape, where ⌫ = 1.5 and the equilateral shape, where
⌫ = 0.

Results are shown in Fig. 24 (see Sect. 7.3.6 for details of
the analyses). The best fit value corresponds to ⌫ = 1.5, fNL =
4.79 which would imply, within this scenario, that the extra field
di↵erent from the inflaton has a mass m ⌧ H. However, the
figure shows that there is no preferred value for ⌫ with all values
allowed at 3�.

Alternatives to inflation: Perhaps the most striking example is
given by the ekpyrotic/cyclic models (for a review, see Lehners
2010) proposed as alternative to inflationary models. Typically
they predict a local NG | f local

NL | > 10. In particular, the so-called
“ekpyrotic conversion” mechanism (in which isocurvature per-
turbations are converted into curvature perturbations during the
ekpyrotic phase) yields f local

NL = �(5/12) c2
1, where c1 is a param-

eter in the potential, requiring 10 & c1 & 20 for compatibility
with power spectrum constraints. This case was ⇠ 4� discrepant
with WMAP data, and with Planck it is decisively ruled out given
our bounds f local

NL = 2.7 ± 5.8 at 68% CL (see Table 9) yield-
ing c1  4.2 at 95% CL. The predictions for the local bispec-
trum from other ekpyrotic models (based on the so called “ki-
netic conversion” taking place after the ekpyrotic phase) yield
f local
NL = (3/2) 3

p
✏+5, where ✏ ⇠ 100 is natural (Lehners 2010).

Assuming a prior �1 < 3 < 5, we obtain �0.8 < 3 < 0.5 at
95% CL, dramatically restricting the viable parameter space of
this model.

9.4. Non-standard inflation models

Constraints on excited initial states: Results from Sect. 7.3 con-
strain a variety of models with flattened bispectra, often in
combination with a non-trivial squeezed limit. The most no-
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Time delay fluctuations

Locally observable effect are very small.  Signal suppressed by 
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What to conclude

“Probably” fluctuations were not converted into curvature at the beginning of 
the HBB but the window is not completely closed. How do we close it?

This is particularly interesting because only inflationary backgrounds gives us 
scale invariant curvature perturbations. One can tune the two point function 
to be scale invariant around other backgrounds but interactions (higher order 
moments) are not scale invariant. In inflation, time translational is the origin of 
scale invariance and thus it is a very robust outcome, irrespective of the 
details of how the perturbations are generated or interact. 

To get scale invariant perturbations around other backgrounds people have 
to invoke a second field that converts later. 

Furthermore building a theory for some of the anomalies requires a second 
field so not seeing local non-G provides an interesting constrain. 

We are led to think about the adiabatic fluctuations during inflation. 



The theory of the adiabatic fluctuations

• There is always the “adiabatic fluctuations” 
• Dynamics of the fluctuations of the clock are very constrained by symmetries, “EFT of inflation”
• One can use time diffs to make the clock look unperturbed and thus all the dynamics is in the 
metric

this does not necessarily need to be the case. To describe perturbations around this solution
one can choose a gauge where the privileged slicing coincides with surfaces of constant t, i.e.
��(~x, t) = 0. In this ‘unitary’ gauge there are no explicit scalar perturbations but only metric
fluctuations. As time di↵eomorphisms have been fixed and are not a gauge symmetry any-
more, the graviton now describes three degrees of freedom: the scalar perturbation has been
eaten by the metric. One therefore can build the most generic e↵ective action with operators
that are functions of the metric fluctuations and that are invariant under the linearly-realized
time-dependent spatial di↵eomorphisms. As usual with e↵ective field theories, this can be
done in a low energy expansion in fluctuations of the fields and derivatives. We obtain the
following Lagrangian [6, 15]:

S =

Z
d4x

p
�g

h 1

2
M2

Pl

R + M2

Pl
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Pl

(3H2 + Ḣ) +

+
1

2!
M

2
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(t)2

2
�Kµ

⌫�K
⌫
µ + ...

i
,(1)

where we denote by �Kµ⌫ the variation of the extrinsic curvature of constant time surfaces
with respect to the unperturbed FRW: �Kµ⌫ = Kµ⌫ � a2Hhµ⌫ with hµ⌫ being the induced
spatial metric, and where M

2,3 and M̄
1,2,3 represent some time-dependent mass scales.

Let us comment briefly on (1). The first term is the Eistein-Hilbert term. The first
three terms are the only ones that start linearly in the metric fluctuations. The coe�cients
have been carefully chosen to ensure that when combined the linear terms in the fluctuations
cancel. The action must start quadratic in the fluctuations. The terms in the second line start
quadratic in the fluctuations and have no derivatives. The terms in third line represent higher
derivative terms. Dots represent operators that start at higher order in the perturbations or in
derivatives. This is the most general action for single field inflation and in fact it is unique [6].

The unitary gauge Lagrangian describes three degrees of freedom: the two graviton he-
licities and a scalar mode. This mode will become explicit after one performs a broken time
di↵eomorphism (Stückelberg trick) to reintroduce the Goldstone boson which non-linearly
realizes this symmetry. In analogy with the equivalence theorem for the longitudinal com-
ponents of a massive gauge boson [19], the physics of the Goldstone decouples from the two
graviton helicities at high enough energies, equivalently the mixing can be neglected. The
detailed study of [6, 7] shows that in most situations of interest this is indeed the case and
one can neglect the metric fluctuations1.

As anticipated, we reintroduce the Goldstone boson (⇡) by performing a broken time-di↵.,
calling the parameter of the transformation �⇡, and then declaring ⇡ to be a field that under
time di↵.s of the form t ! t + ⇠0(x) transforms as

⇡(x) ! ⇡̃(x̃(x)) = ⇡(x)� ⇠0(x) . (2)

In this way di↵. invariance is restored at all orders. For example the terms containing g00 in

1Equivalently, the neglected e↵ects are suppressed by slow-roll parameters or by powers of H/MPl.

3

All single field models fall in this framework but this is more general. 

Change the 
dispersion 

relation of the 
fluctuations



The connection between sound speed and non-Gaussianity
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pairs of rows in the table.

This “two-way” null test can be generalized to an N -way null test that tests mutual
consistency between f orth

NL estimates obtained in all N rows of the table. We represent the

f orth
NL estimates as a length-N vector fi, and compute the N -by-N covariance matrix Cij

using Monte Carlo simulations with shared CMB and noise realizations. We then compute

an overall best-fit f orth
NL value F which minimizes χ2 = (fi−F )C−1ij (fj−F ). If the N estimates

are mutually consistent, then the value of χ2 at the minimum will be distributed as a χ2

random variable with (N − 1) degrees of freedom.

We find that the channel-channel null tests are marginal. The N -way null test gives

χ2 = 16.3 with 8 degrees of freedom, corresponding to one-sided probability p = 0.038. The
most discrepant pair of rows in Table 16 is (W,W4), which differ by 3.2σ relative to Monte
Carlo simulations. This statistical significance should not be taken at face value since there

are 36 matrix entries in Table 16, and we have chosen the most anomalous one. However, if
we construct the same matrix for each member of an ensemble of simulations, we find that

the probability that at least one pair of rows is discrepant by > 3.2σ is 2.6%. Finally, we
observe that the discrepancy between V-band and W-band channels, which is in some sense

the most natural split, is 2.3σ, corresponding to probability p = 0.021.

We conclude that there is some tension in the channel-channel null tests, with p-value

around a few percent depending on which test is chosen. Since we have also considered
null tests that pass cleanly (i.e. the tests based on scale dependence and sky location),

our interpretation is that one failure at the few-percent level does not indicate systematic
contamination, although the discrepancy between V-band and W-band is a slight concern.
We therefore cautiously proceed to discuss the physical implications of the non-Gaussianity

constraints.

We opt to work in the context of single-field inflation, and use the effective field theory
developed in Cheung et al. (2008a,b). The EFT provides a master Lagrangian which is
general enough to describe almost all single-field models of inflation. The action consists of

a standard kinetic term, plus small interaction terms whose coefficients parameterize allowed
non-Gaussianity:

S =

∫
d4x

√
−g

[

−M2
PlḢ

c2s
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)
+ · · ·

]

(56)
Non-Gaussianity is parameterized by a dimensionless sound speed cs, and a dimensionless pa-
rameter A that represents the ratio between the coefficients the operators of π̇3 and π̇(∂iπ)2.

We treat cs and A as free parameters, but specific models will make predictions. For ex-

WMAP 9yr  1212.5225
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N  90, we find
�  0.7 95% CL , (96)

dramatically restricting the allowed parameter space of this
model.

Power-law k-inflation: These models (Armendariz-Picon et al.
1999; Chen et al. 2007b) predict f equil

NL = �170/(81�), where
ns � 1 = �3�, c2

s ' �/8. Assuming a prior of 0 < � < 2/3,
our constraint f equil

NL = �42 ± 75 at 68% CL (see Table 9)
leads to the limit � � 0.05 at 95% CL. On the other hand,
Planck’s constraint on ns � 1 yields the limit 0.01  � 
0.02 (Planck Collaboration XXII 2013). These conflicting lim-
its severely constrain this class of models.

Flat Models and higher derivative interactions: Flat NG can
characterize inflationary models which arise from independent
interaction terms di↵erent from the (⇡̇)3 and ⇡̇(r⇡)2 discussed
in Sect. 2 (see also Sect. 9.2). An example is given by mod-
els of inflation based on a Galilean symmetry (Creminelli et al.
2011a), where one of the inflaton cubic interaction terms allowed
by the Galilean symmetry, M3[⇡̈(@i@ j⇡)2/a4 � 2H⇡̇⇡̈2 + 3H3⇡̇3],
contributes to the flat bispectrum with an amplitude f flat

NL =

(35/256)(M3H)/(✏M2
Pl) (Creminelli et al. 2011a). Here, ⇡ is the

relevant inflaton scalar degree of freedom, ✏ the usual slow-roll
parameter and a the scale factor and H the Hubble parame-
ter during inflation. Our constraint f flat

NL = 37 ± 77 at 68% CL
(see Table 11) leads to (M3H)/(✏M2

Pl) = 270 ± 563 at 68%
CL. These interaction terms are similar to those arising in gen-
eral inflaton field models that include extrinsic curvature terms,
e.g., parameterized in the E↵ective Field Theory approach as
M2⇡̇(@i j⇡)2/a4 (Bartolo et al. 2010a), which contribute to a flat
bispectrum with an amplitude f flat

NL = (50/108) M2/(c2
s ✏M2

Pl). In
this case, we obtain M2/(c2

s ✏M2
Pl) = 80 ± 166 at 68% CL.

9.2. Implications for Effective Field Theory of Inflation

The e↵ective field theory approach to inflation (Weinberg 2008;
Cheung et al. 2008) provides a general way to scan the NG pa-
rameter space of inflationary perturbations. For example, one
can expand the Lagrangian of the dynamically relevant degrees
of freedom into the dominant operators satisfying some under-
lying symmetries. We will focus on general single-field models
parametrized by the following operators (up to cubic order)

S =
Z

d4x
p�g

2

6

6

6

6
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�M2
PlḢ
c2

s
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where ⇡ is the scalar degree of freedom (⇣ = �H⇡). The mea-
surements on f equil

NL and f ortho
NL can be used to constrain the mag-

nitude of the inflaton interaction terms ⇡̇(@i⇡)2 and (⇡̇)3 which
give respectively f EFT1

NL = �(85/324)(c�2
s � 1) and f EFT2

NL =

�(10/243)(c�2
s � 1)

h

c̃3 + (3/2)c2
s

i

(Senatore et al. 2010, see also
Chen et al. 2007b; Chen 2010b). These two operators give rise
to shapes that peak in the equilateral configuration that are,
nevertheless, slightly di↵erent, so that the total NG signal will
be a linear combination of the two, possibly leading also to
an orthogonal shape. There are two relevant NG parameters,
cs, the sound speed of the the inflaton fluctuations, and M3
which characterizes the amplitude of the other operator ⇡̇3.
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Fig. 22. 68%, 95%, and 99.7% confidence regions in the param-
eter space ( f equil

NL , f ortho
NL ), defined by thresholding �2 as described

in the text.
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Fig. 23. 68%, 95%, and 99.7% confidence regions in the single-
field inflation parameter space (cs, c̃3), obtained from Fig. 22 via
the change of variables in Eq. (98).

Following Senatore et al. (2010) we will focus on the dimension-
less parameter c̃3(c�2

s � 1) = 2M4
3c2

s/(ḢM2
Pl). For example, DBI

inflationary models corresponds to c̃3 = 3(1 � c2
s )/2, while the

non-interacting model (vanishing NG) correspond to cs = 1 and
M3 = 0 (or c̃3(c�2

s � 1) = 0).
The mean values of the estimators for equilateral and orthog-

onal NG amplitudes are given in terms of cs and c̃3 by

f equil
NL =

1 � c2
s

c2
s

(�0.275 + 0.0780A)

f ortho
NL =

1 � c2
s

c2
s

(0.0159 � 0.0167A) (98)
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where A = �(c2
s + (2/3)c̃3), and the coe�cients are com-

puted from the Fisher correlation matrix between the equilat-
eral and orthogonal template bispectra and the theoretical bis-
pectra arising from the two operators ⇡̇(r⇡)2 and ⇡̇3. Given
our constraints on f equil

NL and f ortho
NL , and the covariance matrix

C of the joint estimators, we can define a �2 statistic given by
�2(c̃3, cs) = uT (c̃3, cs)C�1u(c̃3, cs), where the vector u is given
by vi(c̃3, cs) = f i(c̃3, cs) � f i

P. f i
P, where i={equilateral, orthogo-

nal}, are the joint estimates of the equilateral and orthogonal fNL
measured by Planck and f i(c̃3, cs) is given by Eq. (98). Figure 22
shows the 68%, 95%, and99.7% confidence regions for f equil

NL and
f ortho
NL , obtained by requiring �2  2.28, 5.99, and 11.62 respec-

tively, as appropriate for a �2 variable with two degrees of free-
dom. The corresponding confidence regions in the (c̃3, cs) pa-
rameter space are shown in Fig. 23. After marginalizing over c̃3
we find the following conservative bound on the inflaton sound-
speed

cs � 0.02 95% CL . (99)

Note that we have also looked explicitly for the non-separable
shapes in Sect. 7.3.1, in particular the two e↵ective field theory
shapes and the DBI inflation shape (see Eqs. (5, 6, 7)) .

9.3. Multi-field models

Curvaton models: Planck NG constraints have interesting im-
plications for the simplest adiabatic curvaton models. They pre-
dict (Bartolo et al. 2004d,c)

f local
NL =

5
4rD
� 5rD

6
� 5

3
, (100)

for a quadratic potential of the curvaton field (Lyth & Wands
2002; Lyth et al. 2003; Lyth & Rodriguez 2005; Sasaki et al.
2006), where rD = [3⇢curvaton/(3⇢curvaton + 4⇢radiation)]D is the
“curvaton decay fraction” evaluated at the epoch of the curva-
ton decay in the sudden decay approximation. Assuming a prior
0 < rD < 1, given our constraint f local

NL = 2.7 ± 5.8 at 68% CL,
we obtain

rD � 0.15 95% CL . (101)

In Planck Collaboration XXII (2013) a limit on rD is derived
from the constraints on isocurvature perturbations under the as-
sumption that there is some residual isocurvature fluctuations in
the curvaton field. For this restricted case, they find rD > 0.98
(95% CL), compatible with the constraint obtained here.

Quasi-single field inflation: It is beyond the scope of this pa-
per to perform a general multi-field analysis employing the local
NG constraints. However, we have performed a detailed anal-
ysis for the quasi-single field models (see Eq. (12)). Quasi-
single field (QSF) inflation models (Chen & Wang 2010b,a;
Baumann & Green 2012) are a natural consequence of inflation
model-building in string theory and supergravity (see Sect. 2.2).
In addition to the inflaton field, these models have extra fields
with masses of order the Hubble parameter, which are stabilized
by supersymmetry. A distinctive observational signature of these
massive fields is a one-parameter family of large NG whose
squeezed limits interpolate between the local and the equilat-
eral shape. Therefore, by measuring the precise momentum-
dependence of the squeezed configurations in the NG, in prin-
ciple, we are directly measuring the parameters of the theory
naturally determined by the fundamental principle of supersym-
metry. These models produce a bispectrum (Eq. (12)) depending
on two parameters ⌫, f QSI

NL , with a shape that interpolates between
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Fig. 24. 68%, 95%, and 99.7% confidence intervals for ⌫ and
f QSI
NL for quasi-single field inflation. The best fit value of ⌫ = 1.5,

f QSI
NL = 4.75 is marked with an X. The contours were calculated

using MC methods by creating 2 ⇥ 109 simulations using the �
covariance matrix around this best fit model.

the local shape, where ⌫ = 1.5 and the equilateral shape, where
⌫ = 0.

Results are shown in Fig. 24 (see Sect. 7.3.6 for details of
the analyses). The best fit value corresponds to ⌫ = 1.5, fNL =
4.79 which would imply, within this scenario, that the extra field
di↵erent from the inflaton has a mass m ⌧ H. However, the
figure shows that there is no preferred value for ⌫ with all values
allowed at 3�.

Alternatives to inflation: Perhaps the most striking example is
given by the ekpyrotic/cyclic models (for a review, see Lehners
2010) proposed as alternative to inflationary models. Typically
they predict a local NG | f local

NL | > 10. In particular, the so-called
“ekpyrotic conversion” mechanism (in which isocurvature per-
turbations are converted into curvature perturbations during the
ekpyrotic phase) yields f local

NL = �(5/12) c2
1, where c1 is a param-

eter in the potential, requiring 10 & c1 & 20 for compatibility
with power spectrum constraints. This case was ⇠ 4� discrepant
with WMAP data, and with Planck it is decisively ruled out given
our bounds f local

NL = 2.7 ± 5.8 at 68% CL (see Table 9) yield-
ing c1  4.2 at 95% CL. The predictions for the local bispec-
trum from other ekpyrotic models (based on the so called “ki-
netic conversion” taking place after the ekpyrotic phase) yield
f local
NL = (3/2) 3

p
✏+5, where ✏ ⇠ 100 is natural (Lehners 2010).

Assuming a prior �1 < 3 < 5, we obtain �0.8 < 3 < 0.5 at
95% CL, dramatically restricting the viable parameter space of
this model.

9.4. Non-standard inflation models

Constraints on excited initial states: Results from Sect. 7.3 con-
strain a variety of models with flattened bispectra, often in
combination with a non-trivial squeezed limit. The most no-
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N  90, we find
�  0.7 95% CL , (96)

dramatically restricting the allowed parameter space of this
model.

Power-law k-inflation: These models (Armendariz-Picon et al.
1999; Chen et al. 2007b) predict f equil

NL = �170/(81�), where
ns � 1 = �3�, c2

s ' �/8. Assuming a prior of 0 < � < 2/3,
our constraint f equil

NL = �42 ± 75 at 68% CL (see Table 9)
leads to the limit � � 0.05 at 95% CL. On the other hand,
Planck’s constraint on ns � 1 yields the limit 0.01  � 
0.02 (Planck Collaboration XXII 2013). These conflicting lim-
its severely constrain this class of models.

Flat Models and higher derivative interactions: Flat NG can
characterize inflationary models which arise from independent
interaction terms di↵erent from the (⇡̇)3 and ⇡̇(r⇡)2 discussed
in Sect. 2 (see also Sect. 9.2). An example is given by mod-
els of inflation based on a Galilean symmetry (Creminelli et al.
2011a), where one of the inflaton cubic interaction terms allowed
by the Galilean symmetry, M3[⇡̈(@i@ j⇡)2/a4 � 2H⇡̇⇡̈2 + 3H3⇡̇3],
contributes to the flat bispectrum with an amplitude f flat

NL =

(35/256)(M3H)/(✏M2
Pl) (Creminelli et al. 2011a). Here, ⇡ is the

relevant inflaton scalar degree of freedom, ✏ the usual slow-roll
parameter and a the scale factor and H the Hubble parame-
ter during inflation. Our constraint f flat

NL = 37 ± 77 at 68% CL
(see Table 11) leads to (M3H)/(✏M2

Pl) = 270 ± 563 at 68%
CL. These interaction terms are similar to those arising in gen-
eral inflaton field models that include extrinsic curvature terms,
e.g., parameterized in the E↵ective Field Theory approach as
M2⇡̇(@i j⇡)2/a4 (Bartolo et al. 2010a), which contribute to a flat
bispectrum with an amplitude f flat

NL = (50/108) M2/(c2
s ✏M2

Pl). In
this case, we obtain M2/(c2

s ✏M2
Pl) = 80 ± 166 at 68% CL.

9.2. Implications for Effective Field Theory of Inflation

The e↵ective field theory approach to inflation (Weinberg 2008;
Cheung et al. 2008) provides a general way to scan the NG pa-
rameter space of inflationary perturbations. For example, one
can expand the Lagrangian of the dynamically relevant degrees
of freedom into the dominant operators satisfying some under-
lying symmetries. We will focus on general single-field models
parametrized by the following operators (up to cubic order)
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Z

d4x
p�g

2

6

6

6

6

4

�M2
PlḢ
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where ⇡ is the scalar degree of freedom (⇣ = �H⇡). The mea-
surements on f equil

NL and f ortho
NL can be used to constrain the mag-

nitude of the inflaton interaction terms ⇡̇(@i⇡)2 and (⇡̇)3 which
give respectively f EFT1

NL = �(85/324)(c�2
s � 1) and f EFT2

NL =

�(10/243)(c�2
s � 1)

h

c̃3 + (3/2)c2
s

i

(Senatore et al. 2010, see also
Chen et al. 2007b; Chen 2010b). These two operators give rise
to shapes that peak in the equilateral configuration that are,
nevertheless, slightly di↵erent, so that the total NG signal will
be a linear combination of the two, possibly leading also to
an orthogonal shape. There are two relevant NG parameters,
cs, the sound speed of the the inflaton fluctuations, and M3
which characterizes the amplitude of the other operator ⇡̇3.
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Fig. 22. 68%, 95%, and 99.7% confidence regions in the param-
eter space ( f equil

NL , f ortho
NL ), defined by thresholding �2 as described

in the text.
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Fig. 23. 68%, 95%, and 99.7% confidence regions in the single-
field inflation parameter space (cs, c̃3), obtained from Fig. 22 via
the change of variables in Eq. (98).

Following Senatore et al. (2010) we will focus on the dimension-
less parameter c̃3(c�2

s � 1) = 2M4
3c2

s/(ḢM2
Pl). For example, DBI

inflationary models corresponds to c̃3 = 3(1 � c2
s )/2, while the

non-interacting model (vanishing NG) correspond to cs = 1 and
M3 = 0 (or c̃3(c�2

s � 1) = 0).
The mean values of the estimators for equilateral and orthog-

onal NG amplitudes are given in terms of cs and c̃3 by

f equil
NL =

1 � c2
s

c2
s

(�0.275 + 0.0780A)

f ortho
NL =

1 � c2
s

c2
s

(0.0159 � 0.0167A) (98)
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cs = 1). Hence the action takes the form of the expression in Eq. (79) with the aforementioned
coefficients. Moreover, we also get the usual Lagrangian for π normalized by Nc, after identifying

π = δφ/ ˙̄φ. We notice in passing that assuming the stress energy tensor that follows from LO obeys
the null energy condition, i.e. ρ̄O + p̄O ≥ 0, then

c2sNc ≤ −2M2
p Ḣ. (86)

Adding higher dimensional operators will shift the normalization of π, like in Eq. (77). In
particular we will generate a non-zero correction to the speed of sound, so that cs ≤ 1. Therefore,
before including interactions with the ADOF, at quadratic order the action is given by Eq. (76),
with (Nc, cs) some matching coefficients, defined as in Eq. (77).

We will not adopt any particular model for the ADOF, rather we will attempt to produce
correlations between different observables, such as the power spectrum and non-Gaussianities,
under some mild assumptions about the n-point functions of the type ⟨O . . .O⟩. But first let us
start by constraining the type of operators that we may add to the effective action in the unitary
gauge.

4. THE INTERACTION TERMS IN UNITARY GAUGE

We move now to the description of the type of operators that we can add to our Lagrangian
in the unitary gauge that will induce couplings between the ADOF and the fluctuations of the
clock. In general, the operators will have some tensorial transformation properties under space-
time diffeomorphisms, and so they will be classified according to their rank. As it was shown in the
analysis of [13, 26], one can write down operators containing only free upper 0 indices. In our case,
however, there is a subtlety we need to address since the O’s are composite operators that may also
contain the metric. Since the metric can be used to contract tensors made out of several different
fields, we define tensor operators Oαβ... always with indices down, and so that δOαβ.../δgµν = 0.

Let us give an example. Let us consider two operators, O1 = ψ2 and O2 = gµν∂µψ∂νψ,
with ψ a scalar field. These are both scalar operators, however, according to our prescription we
should write: O2 = gµνÕ2µν , with Õ2µν = ∂µψ∂νψ. In this way the ambiguity with respect to
metric factors is removed. Operators are then classified as a Taylor expansion in fluctuations and
derivatives as usual. We now proceed to illustrate the leading ones.

4.1. Scalars

In an expansion in metric fluctuations and derivatives, the most relevant operator is given by

SO
1 = −

∫

d4x
√
−g f1(t)O1, (87)

where O1 is a scalar under full space-time diffeomorphisms. The next type of operators can be
organized as follows

SO
2 = −

∫

d4x
√
−g

{

f2(t)δg
00O2 + f3(t)(δg

00)2O3 + f4(t)(δg
00)3O4 + . . .

}

, (88)

where Oa, a = 1, 2 . . ., are also scalars and the ellipses include pieces involving higher power of the
fluctuations as well as higher derivative terms such as ∂0δg00 or δK. In appendix E we discuss� Rate at which waves loose energy
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diffeomorphisms requires the following combination

F (∂tφ) → F (nµ∂µφ) → F (φ̇
√

−g00), (216)

which not only induces γπ̇ dissipation, but also (among others) a non-linear term: −γ(∂iπ)2.
(Notice the relative sign is dictated by the non-linear realization of the symmetry.) Since horizon
crossing happens at csk⋆ ≃

√
γH, this type of non-linear coupling leads to

γ(∂iπ)2

c2s∂
2
i π

∼ fNLζ → |fNL| ≃
γ

c2sH
. (217)

The shape is plotted in Fig. 2, and peaks at the equilateral configuration. (This is not surprising
given the fact that the non-linearities involve derivatives of ζ.) However, there is also a significant
contribution at folded triangles x1 = 1, x2 ≃ x3 ≃ 1/2. Other non-linear terms may depend
explicitly on the noise, such as δȮS π̇, and are plotted in Fig. 3. Despite the fact that it scales
with a single power of π̇ one can show that its contribution in the limit kL ≪ kS is suppressed by
(kL/kS)2 with respect to the local shape, in agreement with the results in [45]. We will analyze
the squeezed limit and consistency conditions in the presence of dissipation in future work.

In this paper we also studied specific realizations of the type of operators introduced in the
EFT and the matching procedure. In particular we analyzed a local version of trapped inflation
where the produced particles decay after they are created, which leads to (approximately) localized
response functions. We showed how the term γ(∂iπ)2 gets generated, with the subsequent γ/(c2sH)
imprint on |fNL|. Crucial aspects of the model include: i) The ADOF responsible for dissipation
do not contribute to the density perturbations at late time, ii) The emergence of a shift symmetry
at the level of the perturbations, and iii) The response functions were predominately sensitive to
the preferred clock φ, whose fluctuations uniquely control the end of inflation, via nµ ≃ ∂µ(t+ π).

Intuitively, the necessary gradients of π appear as a result of the fluctuations of the clock, the
field φ itself, which sets the equal time surfaces where the unperturbed computation is assumed
to hold to a good approximation. The derivative expansion remains valid as long as the typical
length scale for the variation of the extrinsic curvature (of equal time surfaces) is larger than the
typical wavelength of the produced particles, namely 1/κ ≪ 1/k⋆. (Our conclusions also apply
to the two-stage model of warm inflation, provided one succeeds in producing sufficient e-foldings
while having γ ≫ H in a consistent fashion.)

One might wonder about the possibility of having a ‘second clock’ controlling the response
functions for the ADOF. As long as we are only concerned about effects on the dynamics of the
one clock driving inflation (assuming this second clock produces negligible direct contributions to
ζ), one can incorporate its presence in the O-system by replacing nµ∂µ → uαO∂α. We will study
this in more detail in future work.

In a nutshell, departing from the vanilla single field scenario opens new possibilities which may
well be realized in nature. Once again, the EFT machinery is a wonderful tool to reduce the plethora
of conceivable realizations to a theory of low energy degrees of freedom coupled to a set of composite
operators whose correlation function encode all the information about the dissipation/fluctuation
properties of each specific model. In our case we reduced the number of additional parameters to
three: γ, νO, Nc. (Also ΓO and MO, controlling the validity of local approximations.) By taking
the ratio between ζ-correlation functions, such as the two and three point functions, we manage
to cancel out most of our ignorance on the underlying dissipative mechanism, thanks to the link
between different n-point functions induced by the symmetries. In this fashion we were able to
show (assuming the noise is Gaussian) that the bispectrum peaks at equilateral configurations and

�⇡̇ ! �(@i⇡)
2 35

FIG. 2: The shape F (x2, x3) = x2
2x

2
3
F (1,x2,x3)
F (1,1,1) given by Eq. (142) for γ = 4H (top) and γ = 40H (bottom).

To avoid showing equivalent configurations twice, the function is set to zero outside the region 1 − x2 ≤
x3 ≤ x2.

7.2. f(t)O I: linear response

Let us now consider the contribution from an interaction of the form f(t)O as in Eq. (87). We
divide the possibilities in two: linear and non-linear response. We treat the latter in the next
section.

To compute non-linear effects in linear response theory we use the force affecting the ADOF to
second order in π. This is given by F = ḟπ + f̈π2/2 + . . ., where the dots stand for terms with
higher powers of π proportional to higher temporal derivatives of f(t). As we mentioned in sec
1.4.2, in general we neglect these terms in the slow roll approximation. Therefore in what follows
we will treat ḟ as essentially constant.
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Non-Gaussianities in Adiabatic fluctuations

They are directly related to basic questions about the properties of fluctuations when they 
were generated. 

They directly tell us about the dispersion relation of fluctuations.

If we change the dispersion relation of the waves NG must be there just by Lorentz invariance. 

When the relevant dynamics happens well inside the horizon, velocities are larger and thus the 
NG effects are enhanced and eventually ruled out by Planck. 

 Slow roll has passed a very non-trivial test.  But we have not closed the window. Should we 
declare victory?
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Shape and attractor solution

Squeezed limit

k3 ⌧ k2, k1

The vanishing amplitude in this limit is a direct reflection of the attractor nature of the inflationary solution. 
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where PR is the amplitude of the power spectrum. Currently the best constraint on its amplitude

comes from the CMB anisotropy measurement by the WMAP satellite, P 1/2
R ≃ 4.3 × 10−5 [1].

Although originally taken as a simple ansatz, this shape dependence turns out to be physically
relevant for many models which predict a sensible non-Gaussianity. The reason is that eq. (4)
describes (at leading order) the most generic form of non-Gaussianity which is local in real space.
This form is therefore expected for models where non-linearities develop outside the horizon. This
happens for all the models in which the fluctuations of an additional light field, different from the
inflaton, contribute to the curvature perturbations we observe. In this case non-linearities come from
the evolution of this field outside the horizon and from the conversion mechanism which transforms
the fluctuations of this field into density perturbations. Both these sources of non-linearity give a
non-Gaussianity of the form (4) because they occur outside the horizon. Examples of this general
scenario are the curvaton models [8], models with fluctuations in the reheating efficiency [9, 10] and
multi-field inflationary models [17] (4).

Being local in position space, eq. (6) describes correlation among Fourier modes of very different
k. It is instructive to take the limit in which one of the modes becomes of very long wavelength
[13], k3 → 0, which implies, due to momentum conservation, that the other two k’s become equal
and opposite. The long wavelength mode ζk⃗3

freezes out much before the others and behaves as
a background for their evolution. In this limit Flocal is proportional to the power spectrum of the
short and long wavelength modes

Flocal ∝
1

k3
3

1

k3
1

. (7)

This means that the short wavelength 2-point function ⟨ζk⃗1
ζ−k⃗1

⟩ depends linearly on the background
wave ζk⃗3

⟨ζk⃗3
ζk⃗1

ζ−k⃗1
⟩ ∝ ⟨ζk⃗3

ζ−k⃗3
⟩

∂

∂ζk⃗3

⟨ζk⃗1
ζ−k⃗1

⟩ . (8)

From this point of view we expect that any distribution will reduce to the local shape (6) in the
degenerate limit we considered5, if the derivative with respect to the background wave does not
vanish.

In standard single field slow-roll inflation the limit k3 → 0 is quite easy to predict. As pointed out
by Maldacena [13], different points along the background wave are equivalent to shift in time along
the inflaton trajectory, so that the derivative with respect to the background wave is proportional
to the tilt of the scalar spectrum. This can be explicitly checked in the full expression of the 3-point
function [13]

Fstand (⃗k1, k⃗2, k⃗3) =
1

8
(2π)4P 2

R ·
1

∏

k3
i

⎡

⎣(3ϵ − 2η)
∑

i

k3
i + ϵ

∑

i̸=j

kik
2
j + 8ϵ

∑

i>j k2
i k

2
j

kt

⎤

⎦ , (9)

where ϵ and η are the usual slow-roll parameters and kt ≡ k1 + k2 + k3. In the limit k3 → 0 eq. (9)
goes as

Fstand(⃗k3 → 0) ∝ 2(η − 3ϵ)
1

k3
1

1

k3
2

= (ns − 1)
1

k3
1

1

k3
2

. (10)

4In these models additional contributions to F not of the local form (6) can be present; they describe non-
Gaussianities generated at horizon crossing. Nevertheless the local contribution is dominant because it has
time to develop outside the horizon for many Hubble times before the final conversion to density perturbations
[18].

5The derivative with respect to the background cannot depend on the relative orientation of k⃗1 and k⃗3,
because this would need a derivative acting on the background giving a subleading contribution in the limit
k⃗3 → 0.
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Three point-function in single field slow roll inflation
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Abstract

The consistency relation for the 3-point function of the CMB is a very powerful observational signa-

ture which is believed to be true for every inflationary model in which there is only one dynamical

degree of freedom. Its importance relies on the fact that deviations from it might be detected in

next generation experiments, allowing us to rule out all single field inflationary models. After mak-

ing more precise the already existing proof of the consistency relation, we use a recently developed

effective field theory for inflationary perturbations to provide an alternative and very explicit proof

valid at leading non trivial order in slow roll parameters.

1 Introduction

In the last few years there has been great progress in understanding the non-Gaussianity of the

primordial spectrum of density fluctuations. Starting from Maldacena’s first full computation of

the non-Gaussian features in single field slow roll inflation [1], several alternative models have been

proposed that produce a large and in principle detectable level of non-Gaussianities [2, 3, 4, 6]

through different mechanisms for generating density fluctuations in the quasi de Sitter inflationary

phase. At the same time, from the experimental side, the WMAP satellite has allowed for a huge

improvement in our measurement of the properties of the CMB. Observations seem to confirm the

generic predictions of standard slow roll inflation [10]. Limits on the primordial non-Gaussianity of

the CMB have been significantly improved [11], but for the moment the data are consistent with a

non-Gaussian signal.

The fact that the CMB seems to be rather Gaussian means that the non-Gaussian component

must be rather small. This makes it clear that the most important observable for non-Gaussianities

will be the 3-point function of density perturbations [12]

⟨ζk⃗1
ζk⃗2
ζk⃗3

⟩ (1)

where ζk⃗1
is the density fluctuation of comoving slices in Fourier space.

As pointed out in [14], due to symmetry reasons, the 3-point function is a real function of two

variables. While on one hand this means that it contains a lot of information about the inflationary

model, on the other hand this also means that there really could be a large number of different

1

ds

2 = �dt

2 + a

2(t)e2⇣(x,t)dx2

k3 ⌧ k2, k1

Is the small scale power modulated in a way that 
correlates with the long wavelength modes ?

The small scale power is independent of the amplitude of the long mode. 

This is a consequence of the  “sequential hiding” of modes and attractor solution.

Local non-Gaussianity is analog to a fluctuation in composition but in something that is 
conserved. 

Local piece suppressed in the 
squeezed limit



Only background that gives scale invariant Gaussian perturbations 
for the adiabatic mode is de Sitter. 

Thus in other scenarios you are forced to get the fluctuations in the 
curvature from a conversion from another field. 

Modes are all super-horizon during conversion. 
They are all observable at the same time as they are all changing the  
equation of state at the same time. There is no suppression in the 
squeezed limit. 

ds

2 = �dt

2 + a

2(t)e2⇣(x,t)dx2
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each

22

Local non-Gaussianity is zero because 
of attractor nature of inflation. Can 
only be true for clock. 

If the theory for the perturbations can 
also describe the background then 
equilateral non-G are small. 

Equilateral part can be really tiny 
because we are looking at time delay 
fluctuations, actual change in the space-
time is down by epsilon. 

“Collapsed” non-Gaussianities are very 
small because we are seeing vacuum 
fluctuations.  

In the Standard story:



Is inflation the final theory ?

Could we ever get to a final theory?



Occam’s razor vs Hickam’s dictum
 

William of Ockham (c. 1285–1349) is remembered as an influential medieval philosopher and nominalist, though his popular fame as a great logician rests chiefly on the maxim 
attributed to him and known as Ockham's razor. The term razor refers to distinguishing between two hypotheses either by "shaving away" unnecessary assumptions or cutting 
apart two similar conclusions.

This maxim seems to represent the general tendency of Occam's philosophy, but it has not been found in any of his writings.[17] His nearest pronouncement seems to be 
Numquam ponenda est pluralitas sine necessitate [Plurality must never be posited without necessity], which occurs in his theological work on the 'Sentences of Peter 
Lombard' (Quaestiones et decisiones in quattuor libros Sententiarum Petri Lombardi (ed. Lugd., 1495), i, dist. 27, qu. 2, K).



Occam’s razor vs Hickam’s dictum
 

Hickam's dictum is a counterargument to the use of Occam's razor in the medical profession.[1] The principle is commonly stated: "Patients can have as 
many diseases as they damn well please". The principle is attributed to John Hickam, MD. Hickam was a faculty member at Duke University in the 
1950s, and was later chairman of medicine at Indiana University.[2]

William of Ockham (c. 1285–1349) is remembered as an influential medieval philosopher and nominalist, though his popular fame as a great logician rests chiefly on the maxim 
attributed to him and known as Ockham's razor. The term razor refers to distinguishing between two hypotheses either by "shaving away" unnecessary assumptions or cutting 
apart two similar conclusions.

This maxim seems to represent the general tendency of Occam's philosophy, but it has not been found in any of his writings.[17] His nearest pronouncement seems to be 
Numquam ponenda est pluralitas sine necessitate [Plurality must never be posited without necessity], which occurs in his theological work on the 'Sentences of Peter 
Lombard' (Quaestiones et decisiones in quattuor libros Sententiarum Petri Lombardi (ed. Lugd., 1495), i, dist. 27, qu. 2, K).
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1. The seeds are primordial

What we have learned so far

2. Amplitude:!
!
3. Slope:

lnAs = �19.932± 0.034

1� ns = 0.0355± 0.0049

!
4. No gravitational waves (10 percent level)!
!
5. No fluctuation in composition (percent level)!
!
6. No departures from Gaussianity Non�Gaussian

Gaussian

< 10

�3 � 10

�4

Planck Collaboration: Cosmological parameters
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Fig. 3. Frequency-averaged T E and EE spectra (without fitting for T -P leakage). The theoretical T E and EE spectra plotted in the
upper panel of each plot are computed from the Planck TT+lowP best-fit model of Fig. 1. Residuals with respect to this theoretical
model are shown in the lower panel in each plot. The error bars show ±1� errors. The green lines in the lower panels show the
best-fit temperature-to-polarization leakage model of Eqs. (11a) and (11b), fitted separately to the T E and EE spectra.
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Fig. 11. Planck measurements of the lensing power spectrum compared to the prediction for the best-fitting base⇤CDM model to the
Planck TT+lowP data. Left: the conservative cut of the Planck lensing data used throughout this paper, covering the multipole range
40  `  400. Right: lensing data over the range 8  `  2048, demonstrating the general consistency with the ⇤CDM prediction
over this extended multipole range. In both cases, green points are the power from lensing reconstructions using only temperature
data, while blue points combine temperature and polarization. They are o↵set in ` for clarity. Error bars are ±1�. In the top panels
the solid lines are the best-fitting base⇤CDM model to the Planck TT+lowP data with no renormalization or �N(1) correction applied
(see text). The bottom panels show the di↵erence between the data and the renormalized and �N(1)-corrected theory bandpowers,
which enter the likelihood. The mild preference of the lensing measurements for lower lensing power around ` = 200 pulls the
theoretical prediction for C��` downwards at the best-fitting parameters of a fit to the combined Planck TT+lowP+lensing data,
shown by the dashed blue lines (always for the conservative cut of the lensing data, including polarization).

• Beam uncertainties are no longer included in the covariance
matrix of the C��` , since, with the improved knowledge of the
beams, the estimated uncertainties are negligible for the lens-
ing analysis. The only inter-bandpower correlations included
in the C��` bandpower covariance matrix are from the uncer-
tainty in the correction applied for the point-source 4-point
function.

As in the 2013 analysis, we approximate the lensing likelihood
as Gaussian in the estimated bandpowers, with a fiducial co-
variance matrix. Following the arguments in Schmittfull et al.
(2013), it is a good approximation to ignore correlations between
the 2- and 4-point functions; so, when combining the Planck
power spectra with Planck lensing, we simply multiply their re-
spective likelihoods.

It is also worth noting that the changes in absolute calibra-
tion of the Planck power spectra (around 2 % between the 2013
and 2015 releases) do not directly a↵ect the lensing results. The
CMB 4-point functions do, of course, respond to any recalibra-
tion of the data, but in estimating C��` this dependence is re-
moved by normalizing with theory spectra fit to the observed
CMB spectra. The measured C��` bandpowers from the 2013 and
current Planck releases can therefore be directly compared, and
are in good agreement (Planck Collaboration XV 2015). Care is
needed, however, in comparing consistency of the lensing mea-
surements across data releases with the best-fitting model pre-
dictions. Changes in calibration translate directly into changes
in Ase�2⌧, which, along with any change in the best-fitting opti-
cal depth, alter As, and hence the predicted lensing power. These
changes from 2013 to the current release go in opposite direc-
tions leading to a net decrease in As of 0.6 %. This, combined
with a small (0.15 %) increase in ✓eq, reduces the expected C��`
by approximately 1.5 % for multipoles ` > 60.

The Planck measurements of C��` , based on the temperature
and polarization 4-point functions, are plotted in Fig. 11 (with
results of a temperature-only reconstruction included for com-
parison). The measured C��` are compared with the predicted
lensing power from the best-fitting base ⇤CDM model to the
Planck TT+lowP data in this figure. The bandpowers that are
used in the conservative lensing likelihood adopted in this pa-
per are shown in the left-hand plot, while bandpowers over the
range 8  `  2048 are shown in the right-hand plot, to demon-
strate the general consistency with the ⇤CDM prediction over
the full multipole range. The di↵erence between the measured
bandpowers and the best-fit prediction are shown in the bottom
panels. Here, the theory predictions are corrected in the same
way as they are in the likelihood15.

Figure 11 suggests that the Planck measurements of C��` are
mildly in tension with the prediction of the best-fitting ⇤CDM
model. In particular, for the conservative multipole range 40 
`  400, the temperature+polarization reconstruction has �2 =
15.4 (for eight degrees of freedom), with a PTE of 5.2 %. For
reference, over the full multipole range �2 = 40.81 for 19 de-
grees of freedom (PTE of 0.3 %); the large �2 is driven by a
single bandpower (638  `  762), and excluding this gives an
acceptable �2 = 26.8 (PTE of 8 %). We caution the reader that
this multipole range is where the lensing reconstruction shows a
mild excess of curl-modes (Planck Collaboration XV 2015), and

15In detail, the theory spectrum is binned in the same way as the
data, renormalized to account for the (very small) di↵erence between
the CMB spectra in the best-fit model and the fiducial spectra used in the
lensing analysis, and corrected for the di↵erence in N(1), calculated for
the best-fit and fiducial models (around a 4 % change in N(1), since the
fiducial-model C��` is higher by this amount than in the best-fit model).

22

Planck Collaboration: Cosmological parameters

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

z

0.90

0.95

1.00

1.05

1.10

(D
V
/r

d
ra

g
)/

(D
V
/r

d
ra

g
) P

la
n
ck

6DFGS

SDSS MGS

BOSS LOWZ
BOSS CMASS

WiggleZ

Fig. 14. Acoustic-scale distance ratio DV(z)/rdrag in the base
⇤CDM model divided by the mean distance ratio from Planck
TT+lowP+lensing. The points with 1� errors are as follows:
green star (6dFGS, Beutler et al. 2011); square (SDSS MGS,
Ross et al. 2014); red triangle and large circle (BOSS “LOWZ”
and CMASS surveys, Anderson et al. 2014); and small blue cir-
cles (WiggleZ, as analysed by Kazin et al. 2014). The grey bands
show the 68 % and 95 % confidence ranges allowed by Planck
TT+lowP+lensing.

The changes to the data points compared to figure 15 of
PCP13 are as follows. We have replaced the SDSS DR7 mea-
surements of Percival et al. (2010) with the recent analysis of
the SDSS Main Galaxy Sample (MGS) of Ross et al. (2014) at
ze↵ = 0.15, and by the Anderson et al. (2014) analysis of the
Baryon Oscillation Spectroscopic Survey (BOSS) ‘LOWZ’ sam-
ple at ze↵ = 0.32. Both of these analyses use peculiar veloc-
ity field reconstructions to sharpen the BAO feature and reduce
the errors on DV/rdrag. The blue points in Fig. 14 show a re-
analysis of the WiggleZ redshift survey by Kazin et al. (2014)
applying peculiar velocity reconstructions. The reconstructions
causes small shifts in DV/rdrag compared to the unreconstructed
WiggleZ results of Blake et al. (2011) and lead to reductions
in the errors on the distance measurements at ze↵ = 0.44 and
ze↵ = 0.73. The point labelled BOSS CMASS at ze↵ = 0.57
shows DV/rdrag from the analysis of Anderson et al. (2014), up-
dating the BOSS-DR9 analysis of Anderson et al. (2012) used in
PCP13.

In fact, the Anderson et al. (2014) analysis solves jointly for
the positions of the BAO feature in both the line-of-sight and
transverse directions (the distortion in the transverse direction
caused by the background cosmology is sometimes called the
Alcock-Paczynski e↵ect, Alcock & Paczynski 1979), leading to
joint constraints on the angular diameter distance DA(ze↵) and
the Hubble parameter H(ze↵). These constraints, using the tabu-
lated likelihood included in the CosmoMC module16, are plotted
in Fig. 15. Samples from the Planck TT+lowP+lensing chains
are plotted coloured by the value of ⌦ch2 for comparison. The
length of the degeneracy line is set by the allowed variation in H0
(or equivalently⌦mh2). In the Planck TT+lowP+lensing⇤CDM
analysis the line is defined approximately by

DA(0.57)/rdrag

9.384

 
H(0.57)rdrag/c

0.4582

!1.7

= 1 ± 0.0004, (26)

16http://www.sdss3.org/science/boss_publications.php

Fig. 15. 68 % and 95 % constraints on the angular diameter dis-
tance DA(z = 0.57) and Hubble parameter H(z = 0.57) from
the Anderson et al. (2014) analysis of the BOSS CMASS-DR11
sample. The fiducial sound horizon adopted by Anderson et al.
(2014) is rfid

drag = 149.28 Mpc. Samples from the Planck
TT+lowP+lensing chains are plotted coloured by their value of
⌦ch2, showing consistency of the data, but also that the BAO
measurement can tighten the Planck constraints on the matter
density.

which just grazes the BOSS CMASS 68 % error ellipse plotted
in Fig. 15. Evidently, the Planck base ⇤CDM parameters are
in good agreement with both the isotropized DV BAO measure-
ments plotted in Fig. 14, and with the anisotropic constraints
plotted in Fig. 15.

In this paper, we use the 6dFGS, SDSS-MGS and BOSS-
LOWZ BAO measurements of DV/rdrag (Beutler et al. 2011;
Ross et al. 2014; Anderson et al. 2014) and the CMASS-DR11
anisotropic BAO measurements of Anderson et al. (2014). Since
the WiggleZ volume partially overlaps that of the BOSS-
CMASS sample, and the correlations have not been quantified,
we do not use the WiggleZ results in this paper. It is clear from
Fig. 14 that the combined BAO likelihood is dominated by the
two BOSS measurements.

In the base ⇤CDM model, the Planck data constrain the
Hubble constant H0 and matter density ⌦m to high precision:

H0 = (67.3 ± 1.0) km s�1Mpc�1

⌦m = 0.315 ± 0.013

)
Planck TT+lowP. (27)

With the addition of the BAO measurements, these constraints
are strengthened significantly to

H0 = (67.6 ± 0.6) km s�1Mpc�1

⌦m = 0.310 ± 0.008

)
Planck TT+lowP+BAO.

(28)
These numbers are consistent with the Planck+lensing con-
straints of Eq. (21). Section 5.4 discusses the consistency of
these estimates of H0 with direct measurements.

Although low redshift BAO measurements are in good agree-
ment with Planck for the base ⇤CDM cosmology, this may not
be true at high redshifts. Recently, BAO features have been mea-
sured in the flux-correlation function of the Ly↵ forest of BOSS
quasars (Delubac et al. 2014) and in the cross-correlation of the
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with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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Fig. 35. Predictions of standard BBN for the primordial abun-
dance of 4He (top) and deuterium (bottom), as a function of the
baryon density !b. The width of the green stripes corresponds
to 68 % uncertainties on nuclear reaction rates and on the neu-
tron lifetime. The horizontal bands show observational bounds
on primordial element abundances compiled by various authors,
and the red vertical band shows the Planck TT+lowP+BAO
bounds on !b (all with 68 % errors). The BBN predictions and
CMB results shown here assume Ne↵ = 3.046 and no significant
lepton asymmetry.

the neutron life-time:

YBBN
P = 0.2311 + 0.9502!b � 11.27!2

b

+ �Ne↵
⇣
0.01356 + 0.008581!b � 0.1810!2

b

⌘

+ �N2
e↵

⇣
�0.0009795 � 0.001370!b + 0.01746!2

b

⌘
;

(70)

yDP = 18.754 � 1534.4!b + 48656!2
b � 552670!3

b

+ �Ne↵
⇣
2.4914 � 208.11!b + 6760.9!2

b � 78007!3
b

⌘

+ �N2
e↵

⇣
0.012907 � 1.3653!b + 37.388!2

b � 267.78!3
b

⌘
.

(71)

By averaging over several measurements, the Particle Data
Group 2014 (Olive et al. 2014) estimates the neutron life-time
to be ⌧n = (880.3 ± 1.1) s at 68 % CL.26 The expansions in
Eqs. (70) and (71) are based on this central value, and we as-
sume that Eq. (70) predicts the correct helium fraction up to a
standard error �(YBBN

P ) = 0.0003, obtained by propagating the
error on ⌧n.

The uncertainty on the deuterium fraction is dominated
by that on the rate of the reaction d(p, �)3He. For that rate,
in PCP13 we relied on the result of Serpico et al. (2004),
obtained by fitting several experiments. The expansions of
Eqs. (70) and (71) now adopt the latest experimental determi-
nation by Adelberger et al. (2011) and use the best-fit expres-
sion in their Eq. (29). We also rely on the uncertainty quoted in

26However, the most recent individual measurement by Yue et al.
(2013) gives ⌧n = [887.8±1.2 (stat.)±1.9 (syst.)] s, which is discrepant
at 3.3� with the previous average (including only statistical errors).
Hence one should bear in mind that systematic e↵ects could be under-
estimated in the Particle Data Group result. Adopting the central value
of Yue et al. (2013) would shift our results by a small amount, a↵ecting
mainly helium (by a factor 1.0062 for YP and 1.0036 for yDP).

Adelberger et al. (2011) and propagate it to the deuterium frac-
tion. This gives a standard error �(yDP) = 0.06, which is more
conservative than the error adopted in PCP13.

6.5.1. Primordial abundances from Planck data and
standard BBN

We first investigate the consistency of standard BBN and the
CMB by fixing the radiation density to its standard value, i.e.,
Ne↵ = 3.046, based on the assumption of standard neutrino de-
coupling and no extra light relics. We can then use Planck data to
measure !b assuming base ⇤CDM and test for consistency with
experimental abundance measurements. The 95 % CL bounds
obtained for the base ⇤CDM model for various data combina-
tions are

!b =

8>>>>>>>><
>>>>>>>>:

0.02222+0.00045
�0.00043 Planck TT+lowP,

0.02226+0.00040
�0.00039 Planck TT+lowP+BAO,

0.02225+0.00032
�0.00030 Planck TT,TE,EE+lowP,

0.02229+0.00029
�0.00027 Planck TT,TE,EE+lowP+BAO,

(72)
corresponding to a predicted primordial 4He number density
fraction (95 % CL) of

YBBN
P =

8>>>>>>>>><
>>>>>>>>>:

0.24665+(0.00020) 0.00063
�(0.00019) 0.00063 Planck TT+lowP,

0.24667+(0.00018) 0.00063
�(0.00018) 0.00063 Planck TT+lowP+BAO,

0.24667+(0.00014) 0.00062
�(0.00014) 0.00062 Planck TT,TE,EE+lowP,

0.24668+(0.00013) 0.00061
�(0.00013) 0.00061 Planck TT,TE,EE+lowP+BAO,

(73)
and deuterium fraction (95 % CL)

yDP =

8>>>>>>>>><
>>>>>>>>>:

2.620+(0.083) 0.15
�(0.085) 0.15 Planck TT+lowP,

2.612+(0.075) 0.14
�(0.074) 0.14 Planck TT+lowP+BAO,

2.614+(0.057) 0.13
�(0.060) 0.13 Planck TT,TE,EE+lowP,

2.606+(0.051) 0.13
�(0.054) 0.13 Planck TT,TE,EE+lowP+BAO.

(74)
The first set of error bars (in parentheses) in Eqs. (73) and (74)
reflect only the uncertainty on !b. The second set includes the
theoretical uncertainty on the BBN predictions, added in quadra-
ture to the errors from !b. The total errors in the predicted he-
lium abundances are dominated by the BBN uncertainty as in
PCP13. For deuterium, the Planck 2015 results improve the de-
termination of !b to the point where the theoretical errors are
comparable or larger than the errors from the CMB. In other
words, for base ⇤CDM the predicted abundances cannot be im-
proved substantially by further measurements of the CMB. This
also means that Planck results can, in principle, be used to in-
vestigate nuclear reaction rates that dominate the theoretical un-
certainty (see Sect. 6.5.2).

The results of Eqs. (73) and (74) are well within the
ranges indicated by the latest measurement of primordial abun-
dances, as illustrated by Fig. 35. The helium data compilation of
Aver et al. (2013) gives YBBN

P = 0.2465 ± 0.0097 (68 % CL),
and the Planck prediction is near the middle of this range.27

As summarized by Aver et al. (2013); Peimbert (2008) helium

27A substantial part of this error comes from the regression to zero
metallicity. The mean of the 17 measurements analysed by Aver et al.
(2013) is hYBBN

P i = 0.2535 ± 0.0036, i.e., about 1.7� higher than the
Planck predictions of Eq. (73).
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Fig. 18. Samples in the �8–⌦m plane from the H13 CFHTLenS
data (with angular cuts as discussed in the text), coloured by the
value of the Hubble parameter, compared to the joint constraints
when the lensing data are combined with BAO (blue), and BAO
with the CMB acoustic scale parameter fixed to ✓MC = 1.0408
(green). For comparison the Planck TT+lowP constraint con-
tours are shown in black. The grey band show the constraint from
Planck CMB lensing.

authors argue may be indications of the e↵ects of baryonic feed-
back in suppressing the matter power spectrum at small scales).
The large-scale properties of CFHTLenS therefore seem broadly
consistent with Planck and it is only as CFHTLenS probes
higher wavenumbers, particular in the 2D and tomographic cor-
relation function analyses (Heymans et al. 2013; Kilbinger et al.
2013; Fu et al. 2014; MacCrann et al. 2014), that apparently
strong discrepancies with Planck appear.

The situation is summarized in Fig. 18. The sample points
show parameter values in the �8–⌦m plane for the ⇤CDM base
model, computed from the Heymans et al. (2013, hereafter H13)
tomographic measurements of ⇠±. These data consist of correla-
tion function measurements in six photometric redshift bins ex-
tending over the redshift range 0.2–1.3. We use the blue galaxy
sample, since H13 find that this sample shows no evidence for
intrinsic galaxy alignments (simplifying the comparison with
theory) and we apply the “conservative” cuts of H13, intended
to reduce sensitivity to the nonlinear part of the power spec-
trum; these cuts eliminate measurements with ✓ < 30 for any
redshift combinations involving the lowest two redshift bins.
Here we have used the halofit prescription of Takahashi et al.
(2012) to model the nonlinear power spectrum, but do not in-
clude any model of baryon feedback or intrinsic alignments.
For the lensing-only constraint we also impose additional pri-
ors in a similar way to the CMB lensing analysis described
in Planck Collaboration XV (2015), i.e., Gaussian priors⌦bh2 =
0.0223 ± 0.0009 and ns = 0.96 ± 0.02, where the exact values
(chosen to span reasonable ranges given CMB data) have little
impact on the results. The sample range shown also restricts the
Hubble parameter to 0.2 < h < 1; note that when comparing
with constraint contours, the location of the contours can change
significantly depending on the H0 prior range assumed. Here we
only show lensing contours after the samples have been pro-
jected into the space allowed by the BAO data (blue contours),
or also additionally restricting to the reduced space where ✓MC

is fixed to the Planck value, which is accurately measured. The
black contours show the constraints from Planck TT+lowP.

The lensing samples just overlap with Planck, and super-
ficially one might conclude that the two data sets are con-
sistent. But the weak lensing constraints approximately define
a 1-dimensional degeneracy in the 3-dimensional ⌦m–�8–H0
space, so consistency of the Hubble parameter at each point in
the projected space must also be considered (see appendix E1
of Planck Collaboration XV 2015). Comparing the contours in
Fig. 18 (the regions where the weak lensing constraints are con-
sistent with BAO observations) the CFHTLenS data favour a
lower value of �8 than the Planck data (and much of the area
of the blue contours also has higher ⌦m). However, even with
the conservative angular cuts applied by H13, the weak lens-
ing constraints depend on the nonlinear model of the power
spectrum and on the possible influence of baryonic feedback
in reshaping the matter power spectrum at small spatial scales
(Harnois-Déraps et al. 2014; MacCrann et al. 2014). The impor-
tance of these e↵ects can be reduced by imposing even more
conservative angular cuts on ⇠±, but of course, this weakens the
statistical power of the weak lensing data. The CFHTLenS data
are not used in combination with Planck in this paper (apart
from Sects. 6.3 and 6.4.4) and, in any case, would have little
impact on most of the extended ⇤CDM constraints discussed
in Sect. 6. Weak lensing can, however, provide important con-
straints on dark energy and modified gravity. The CFHTLenS
data are therefore used in combination with Planck in the com-
panion paper (Planck Collaboration XIV 2015) which explores
several halofit prescriptions and the impact of applying more
conservative angular cuts to the H13 measurements.

5.5.3. Planck cluster counts

In 2013 we noted a possible tension between our primary CMB
constraints and those from the Planck SZ cluster counts, with the
clusters preferring lower values of �8 in the base ⇤CDM model
in some analyses (Planck Collaboration XX 2014). The compar-
ison is interesting because the cluster counts directly measure �8
at low redshift; any tension could signal the need for extensions
of the base model, such as non-minimal neutrino mass (though
see Sect. 6.4). However, limited knowledge of the scaling rela-
tion between SZ signal and mass have hampered the interpreta-
tion of this result.

With the full mission data we have created a larger cata-
logue of SZ clusters with a more accurate characterization of
its completeness (Planck Collaboration XXIV 2015). By fitting
the counts in redshift and signal-to-noise, we are able to si-
multaneously constrain the slope of the SZ signal-mass scal-
ing relation and the cosmological parameters. A major uncer-
tainty, however, remains the overall mass calibration, which
in Planck Collaboration XX (2014) we quantified with a bias
parameter, (1 � b), with a fiducial value of 0.8 and a range
0.7 < (1 � b) < 1. In the base ⇤CDM model, the primary
CMB constraints prefer a normalization below the lower end
of this range, (1 � b) ⇡ 0.6. The recent, empirical normaliza-
tion of the relation by the Weighing the Giants lensing program
(WtG; von der Linden et al. 2014) gives 0.69 ± 0.07 for the 22
clusters in common with the Planck cluster sample. This cali-
bration reduces the tension with the primary CMB constraints in
base ⇤CDM. In contrast, correlating the entire Planck 2015 SZ
cosmology sample with Planck CMB lensing gives 1/(1 � b) =
1±0.2 (Planck Collaboration XXIV 2015), toward the upper end
of the range adopted in Planck Collaboration XX (2014) (though
with a large uncertainty). An alternative lensing calibration by
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Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied
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FIG. 12. Upper: BB spectrum of the BICEP2/Keck maps be-
fore and after subtraction of the dust contribution, estimated
from the cross-spectrum with Planck 353GHz. The error bars
are the standard deviations of simulations, which, in the lat-
ter case, have been scaled and combined in the same way. The
inner error bars are from lensed-⇤CDM+noise simulations as
in the previous plots, while the outer error bars are from
the lensed-⇤CDM+noise+dust simulations. The red curve
shows the lensed-⇤CDM expectation. Lower: constraint on r
derived from the cleaned spectrum compared to the fiducial
analysis shown in Fig. 6.

analysis with the full multi-spectra likelihood. It is clear
from the widths of the likelihood curves that compressing
the spectra to form the cleaned di↵erence results in very
little loss of information on r. The di↵erence in peak
values arises from the di↵erent data treatments and is
consistent with the scatter seen across simulations. Fi-
nally, we note that one could also form a combination
(BK⇥BK�2↵BK⇥P+↵2P⇥P)/(1�↵)2 in which dust
does not enter at all for ↵ = ↵fid. However, the variance
of this combination of spectra is large due to the Planck
noise levels, and likelihoods built from this combination
are considerably less constraining.

V. POSSIBLE CAUSES OF DECORRELATION

Any systematic error that suppresses the BK150⇥P353
cross-frequency spectrum with respect to the
BK150⇥BK150 and P353⇥P353 single-frequency
spectra would cause a systematic upward bias on the r
constraint. Here we investigate a couple of possibilities.

A. Spatially varying dust frequency spectrum

If the frequency dependence of polarized dust emission
varied from place to place on the sky, it would cause the
150GHz and 353GHz dust sky patterns to decorrelate
and suppress the BK150⇥P353 cross-frequency spectrum
relative to the single-frequency spectra. The assump-
tion made so far in this paper is that such decorrela-
tion is negligible. In fact PIP-XXX implicitly tests for
such variation in their Figure 6, where the Planck single-
and cross-frequency spectra are compared to the modi-
fied blackbody model (with the cross-frequency spectra
plotted at the geometric mean of their respective frequen-
cies). This plot is for an average over a large region of low
foreground sky (24%); however, note that if there were
spatial variation of the spectral behavior anywhere in this
region it would cause suppression of the cross-frequency
spectra with respect to the single-frequency spectra.
PIP-XXX also tests explicitly for evidence of decorre-

lation of the dust pattern across frequencies. Their fig-
ure E.1 shows the results for large and small sky patches.
The signal-to-noise ratio is low in clean regions, but no
evidence of decorrelation is found.
As a further check, we artificially suppress the ampli-

tude of the BK150⇥P353 spectra in the Gaussian dust-
only simulations (see Sec. IVA) by a conservative 10%
(PIP-XXX sets a 7% upper limit). We find that the
maximum likelihood value for r shifts up by an average
of 0.018, while Ad shifts down by an average of 0.43µK2,
with the size of the shift proportional to the magnitude of
the dust power in each given realization. This behavior
is readily understandable—since the BK150⇥BK150 and
BK150⇥P353 spectra dominate the statistical weight, a
decrease of the latter is interpreted as a reduction in dust
power, which is compensated by an increase in r. The
bias on r will be linearly related to the assumed decorre-
lation factor.

B. Calibration, analysis etc.

Figure 3 shows that the EE spectrum BK150⇥BK150
is extremely similar to that for BK150⇥P143. We
can compare such spectra to set limits on possible
decorrelation between the BICEP2/Keck and Planck
maps arising from any instrumental or analysis re-
lated e↵ect, including di↵erential pointing, polarization
angle mis-characterization, etc. Taking the ratio of
BK150⇥P143 to the geometric mean of BK150⇥BK150
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Space based experiments

Stage−I − ≈ 100 detectors

Stage−II − ≈ 1,000 detectors

Stage−III − ≈ 10,000 detectors

Stage−IV − ≈ 100,000 detectors

Figure 6. Plot illustrating the evolution of the raw sensitivity of CMB experiments, which scales as
the total number of bolometers. Ground-based CMB experiments are classified into Stages with Stage II
experiments having O(1000) detectors, Stage III experiments having O(10,000) detectors, and a Stage IV
experiment (such as CMB-S4) having O(100,000) detectors.

consequence, the fundamental production unit for TES devices are arrays of detectors (see Fig. 8), an
important attribute when considering the production of the 500,000 detectors required by CMB-S4. Second
TES devices are low-impedance (1 ⌦) and can be multiplexed with modern-day Superconducting QUantum
Interference Device (SQUID) multiplexers [96, 97, 98]. Multiplexed readouts are important for operating
large detector arrays at sub-Kelvin temperatures and are essential for CMB-S4. Lastly, TES detectors have
been successfully deployed as focal planes at the forefront of CMB measurements.

The TES was invented by HEP for detecting Dark Matter and neutrinos. Its subsequent integration into
CMB focal planes has enabled kilo-pixel arrays realizing the Stage II CMB program and ushering in an
era of unprecedented sensitivity. TES-based CMB detectors are the favored technology among Stage II
and proposed Stage III experiments, and have a clear path to the sensitivities required by CMB-S4. The
ubiquity of TES detectors for CMB illustrates the direct connection between HEP-invented technology and
CMB science.

The CMB-S4 Experimental Program

Delivering a half-million background-limited bolometers necessitates a change in the execution of the US
ground-based CMB program. The current US program consists of a number of independent (primarily
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Individual detectors achieved photon noise limited performance for ground-based imaging in the 
1990s.  The photon noise from only astrophysical sources, achievable in space with a cold 
telescope, ~10-18 W/√Hz and varying somewhat with wavelength, is now within demonstrated 
sensitivities.  Imaging and polarimetry in the next decade will thus be driven not by detector 
sensitivity but by array formats.  Far-infrared spectroscopy from a cold telescope however requires 
sensitivity ~10-20 W/√Hz to reach the astrophysical photon noise limit.  Already new devices have 
been demonstrated that approach this requirement.  Achieving this sensitivity in working detector 
arrays remains a challenge for the coming decade. 
 

   
Fig. 1. Detector sensitivity (left) has historically doubled every 2 years over the past 70 years.  Detector arrays (right) 
have doubled in format every 20 months over the past 10 years. 
 

Two detector technologies show promise to develop the arrays needed in the next decade.  
Transition-edge superconducting (TES) bolometers and Microwave Kinetic Inductance Detectors 
(MKIDs) are based on different principles of superconductivity.  TES bolometers have 
demonstrated NEPs sufficient for imaging, with good low-frequency noise stability.  Multiple 
instruments are currently in development based on arrays up to 10,000 detectors using both time-
domain multiplexing (TDM) and frequency-domain multiplexing (FDM) with SQUIDs 
(Superconducting QUantum Interference Devices).  MKIDs have recently demonstrated 
competitive sensitivity, and plans are afoot to field the first astronomical camera based on this 
technology.  Both sensors show potential to realize the very low ~10-20 W/√Hz sensitivity needed 
for space-borne spectroscopy.  RF-based multiplexing offers a large increase in the multiplexing 
factor compared with SQUID TDM/FDM, a key for developing the next generation of arrays with 
up to 106 elements. 
 
2b. Detectors:  TES Bolometers:  A TES bolometer is a thermal detector where photons are 
absorbed and thermalized and the resulting energy is sensed as a temperature rise (see Fig. 2). A 
TES film serves as a sensitive thermometer based on the steep change in resistance in the 
superconducting-to-normal transition region. The temperature of a TES can be tailored by using a 
bilayer film consisting of a thin layer of normal metal and a thin layer of superconductor, resulting 
in a tunable transition temperature.  Bolometers can be made more sensitive by decreasing their 
thermal conductivity and temperature. For achieved thermal isolation and heat capacities, this 
requires operational temperatures in the range of 50 - 300 mK. 

TES sensors are voltage-biased, providing strong electro-thermal feedback that linearizes 
detector responsivity and reduces the response time, offering advantages over semi-conducting 
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model particles into photons conserves the comoving entropy and therefore, the diluted temperature of a
relic before neutrino decoupling is given by

✓
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grelic freeze�out
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=
43/4

grelic freeze�out
?

, (3.34)

where g? is defined as above to be the number of independent spin states including an additional factor of 7
8

for fermions. The order of magnitude di↵erence in �Ne↵ before and after the QCD phase transition comes
from order of magnitude drop in g? below the QCD scale. At temperatures well above to top mass, the
standard model gives g? = 106.75.

Even a measurement of Ne↵ which agrees with the standard model prediction to high precision would be
very interesting due to the constraints it would place on physics beyond the standard model. Some specific
implications for sterile neutrinos, axions and other popular models will be discussed below. Broadly speaking,
constraining �Ne↵ at the 10�2 level would constrain a wide variety of models that are consistent with current
cosmological, astrophysical, and lab-based constraints. Furthermore, because of the sharp change in �Ne↵

at the QCD phase transition, the improvement from current constraints to projections for CMB-Stage IV
can be quite dramatic.

For the minimal scenario of a single real scalar, reaching �(Ne↵) ⇠ 1 ⇥ 10�2 would push the constraint on
freeze-out temperatures from electroweak scale to the reheat temperature. Nevertheless, a measurement a
factor of a few times larger would still be extraordinarily valuable, for higher spin fields, multiple light scalars
and modifications to the thermal history up to the electroweak scale. This broad reach to extremely high
energies and very early times demonstrates the discovery potential for a precision measurement of Ne↵ with
the CMB. Furthermore, the CMB power spectrum has the ability to distinguish among certain types of dark
radiation based on the behavior of its density perturbations [103, 52]. This point will be discussed further
below.
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experiments such as ECHO, HOLMES, and NuMECS utilize multiplexed superconducting detectors, the
same technology baselined for the CMB-S4 experiment. Another promising direction for direct neutrino
mass measurement is the frequency-based technique employed by the Project-8 experiment. Project-8 aims
to measure the beta-decay spectrum of Tritium by measuring the frequency of cyclotron radiation emitted by
the decay electrons when trapped in a magnetic field. An exciting aspect to this frequency-based technique
is the potential to trap atomic Tritium which is not subject to the rotational-vibrational excitations of
molecular Tritium. A spectroscopic measurement using atomic Tritium could eventually achieve sensitivities
of < 0.04 eV, a level comparable to cosmological measurements.

The relation between cosmological measurement from CMB-S4, kinematic constraints constraints expected
from KATRIN [], and upcoming long-baseline oscillation experiments is shown in Fig. 7. The three ap-
proaches to neutrino mass and mixing are complementary and the combination of their results will either
reveal new physics in the neutrino sector or provide a definitive measure of the full neutrino mass spectrum.

Figure 7. Shown are the current constraints and forecast sensitivity of cosmology to the neutrino mass in
relation to the neutrino mass hierarchy. In the case of an “inverted hierarchy,” with an example case marked
as a diamond in the upper curve, the CMB-S4 (with DESI BAO prior) cosmological constraints would have
a very high-significance detection, with 1� error shown as a blue band. In the case of a normal neutrino mass
hierarchy with an example case marked as diamond on the lower curve, CMB-S4 would detect the lowestP

m⌫ at >⇠3�. Also shown is the sensitivity from the long baseline neutrino experiment (DUNE) as the pink
shaded band, which should be sensitive to the neutrino hierarchy. Figure adapted from the Snowmass CF5
Neutrino planning document.

Possible anomalies found in short baseline oscillation experiments (LSND, MiniBoon, etc.) may be explained
as an active-sterile neutrino oscillation. Parameters required to these fits typically lead to thermalization
of the sterile species in the early universe before neutrino decoupling, resulting in non-standard Ne↵ and
contribution to

P

⌫ m⌫ . Further description can be found below in Section 3.4.1.
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We either constrain a different period during inflation to test if indeed things 
were approximately time translation invariant or we have to surpass the 
statical precision of the CMB. 

Can we improve over CMB?

Constraints are statistical in 
nature, they scale as 
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FIG. 1: SPT power spectrum at linear (black; dotted), 1-loop (red; solid), and 2-loop (blue; dashed) order. The squares with
error bars show the mean and error from our N-body simulations. The four panels show ΛCDM (left) and cCDM (right) at
redshifts 1 (top) and 0 (bottom). Each curve has been divided by the no-wiggle power spectrum of [40] to reduce the dynamic
range. We also indicate the domain of validity of 1-loop SPT according to the heuristic prescription of [41] (∆2 < 0.4), and
according to the criterion P (3) < α PL for α = 0.01, 0.03.

in this direction could be important.

Figure 3 shows the predicted power spectrum for the
remainder of the theories that we consider in this work.
With Figures 1 and 2, these figures give an overview of
the agreement between our N-body simulations and the
perturbation theories for ΛCDM and cCDM. Some of
the trends can be seen easily in these figures, and are
generic across cosmologies and redshifts. For instance 1-
loop SPT, which is the same as 1-loop LPT, always over-
predicts P (k) at high k. Lagrangian resummation theory
on the other hand is much too strongly damped beyond
the first wiggle. Large-N theory more or less traces 1-
loop SPT before turning over, while time-RG theory and
RGPT follow the general trends of the N-body data with-
out fitting any particular feature precisely. (Note that
the nearly perfect agreement between RGPT and sim-

ulations for cCDM at z = 1 is likely spurious, as this
level of agreement is not seen for other cosmologies or at
other redshifts.) RPT and closure give nearly identical
tree-level predictions, and very similar 1-loop predictions
for P (k). Closure theory appears to benefit greatly from
going to 2-loop order, whereas for RPT even at z = 1 it
appears that 2-loop does worse than 1-loop.

While we have run many realizations of each cosmol-
ogy to reduce run-to-run variance, one sees in Figures 1,
2 and 3 that the N-body data are still noisy at low k,
which makes it difficult to make quantitative statements
about the performance of the perturbation theories. To
overcome this we define a ‘reference spectrum’ which in-
terpolates the N-body results at high and intermediate
k with the 1-loop SPT calculation at low k. This elimi-
nates the large scatter from the finite number of modes

1-Loop 2-Loop

Nonlinear corrections grow rapidly 
with k

Where will the constrains come 
from?
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companion papers [31, 32] we compare perturbation theory with the results of numerical simulations for the same
initial conditions. This is a more stringent test than what is presented here. Our goal in this paper is to reproduce the
comparison method used in the literature and try to relate the result to what we see in the more detailed comparison.
We will find that in terms of the maximum k where the perturbative calculation can be trusted both results agree.

This paper is organized as follows. After a brief review of the EFT of LSS, we consider in more detail the UV
sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
correlations functions that involve momentum.

II. THE EFT OF LSS

In the EFT of LSS one sets to solve perturbatively the following equations:

@⌧� + @i[(1 + �)vi] = @iu
i ,

@⌧v
i + Hvi + @i�+ vj@jv

i = � 1

a⇢
@j⌧

ij , (1)

4� =
3

2
H2⌦m� .

These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:
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
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a⇢
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j

�
= ⌧det✓ + ⌧ stoch✓ . (2)

The deterministic part of the stresses ⌧det✓ can be modelled perturbatively. In the EFT we write schematically

⌧det✓ = ⌧det✓ [@i@j �̄]. (3)

The deterministic part of the stresses is a local function of the perturbative solution, and we have used the equivalence
principle to demand that it can only depend on second derivatives of the gravitational potential (higher spatial deriva-
tives and time derivatives can also appear). We have introduced �̄ = �/(3/2H2⌦m) so that @i@j �̄ is dimensionless
and 4�̄ = �. For the stochastic part, all we can do is model the statistical properties of ⌧ stoch✓ .

In the EFT of LSS ⌧det✓ is modeled as a power series in @i@j �̄ and its spatial and time derivatives. In addition
to the equivalence principle, mass and momentum conservation restrict the form of both ⌧det✓ and of the statistical
properties of ⌧ stoch✓ . In particular in Fourier space ⌧det✓ (k) needs to go to zero at least as k2 faster than the density
when k ! 0 and the power spectrum of ⌧ stoch✓ should go to zero at least as k4.

To calculate the one-loop power spectra in ⇤CDM, only the lowest order piece of ⌧det✓ is relevant. It is given by

⌧det✓

��
LO

= �d24�(1) = �d244�̄(1) , (4)

where �(1) is the linear solution of perturbation theory. In this formulation, because ⌧det✓ acts as a source in the
equations of motion, the time dependence of d2 will a↵ect the results. In particular it will be relevant to determine
the relative sizes of the corrections in the di↵erent two point functions involving � and ✓.
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sensitivity of the one- and two-loop integrals in Sec. II B and IIC. From the UV sensitivity, we derive our ansatz for
the two-loop counterterms in Sec. IID and an even simpler procedure for the counterterms is discussed in Sec. II E. In
Sec. III we compare our approach with numerical simulations and present our results. Also, we discuss the two-point
correlations functions that involve momentum.

II. THE EFT OF LSS

In the EFT of LSS one sets to solve perturbatively the following equations:

@⌧� + @i[(1 + �)vi] = @iu
i ,

@⌧v
i + Hvi + @i�+ vj@jv

i = � 1

a⇢
@j⌧

ij , (1)

4� =
3

2
H2⌦m� .

These equations di↵er from those of SPT [3] due to the addition of new source term, ui in the continuity equation
and a stress tensor source ⌧ ij in the Euler equation. These sources arise from small scales, where the perturbative
solution of SPT is not applicable. In the EFT of LSS they have to be modeled as they arise from modes that are
outside the range of applicability of the theory and thus result in the introduction of free parameters. The EFT of
LSS provides an organizing framework for how to model these sources, providing a list of terms with their associated
free parameters that need to be introduced to achieve a desired accuracy.

For simplicity, in the discussion that follows we concentrate on the stresses that appear in the Euler equation. In
this paper we will not consider velocity statistics, but only statistics involving the density and the momentum. In
such case it su�ces to discuss the stresses in the Euler equation as the e↵ects from ui in the statistics we will consider
can be mimicked by changing ⌧ ij . In any case, all the conceptual points we will make below are applicable to both
⌧ ij and ui.

The ⌧ ij stresses come in two di↵erent forms. Some of these stresses can be computed in terms of the perturbative
solution, others cannot. For the latter one only has a model for the statistical properties of those stresses. It is
convenient to decompose the velocity field into its gradient and curl pieces. At the order we will work in this paper
only the gradient component will be relevant, thus the stresses we need to model only enter through a scalar quantity:

⌧✓ ⌘ �@i


1

a⇢
@j⌧

j

�
= ⌧det✓ + ⌧ stoch✓ . (2)

The deterministic part of the stresses ⌧det✓ can be modelled perturbatively. In the EFT we write schematically

⌧det✓ = ⌧det✓ [@i@j �̄]. (3)

The deterministic part of the stresses is a local function of the perturbative solution, and we have used the equivalence
principle to demand that it can only depend on second derivatives of the gravitational potential (higher spatial deriva-
tives and time derivatives can also appear). We have introduced �̄ = �/(3/2H2⌦m) so that @i@j �̄ is dimensionless
and 4�̄ = �. For the stochastic part, all we can do is model the statistical properties of ⌧ stoch✓ .

In the EFT of LSS ⌧det✓ is modeled as a power series in @i@j �̄ and its spatial and time derivatives. In addition
to the equivalence principle, mass and momentum conservation restrict the form of both ⌧det✓ and of the statistical
properties of ⌧ stoch✓ . In particular in Fourier space ⌧det✓ (k) needs to go to zero at least as k2 faster than the density
when k ! 0 and the power spectrum of ⌧ stoch✓ should go to zero at least as k4.

To calculate the one-loop power spectra in ⇤CDM, only the lowest order piece of ⌧det✓ is relevant. It is given by

⌧det✓

��
LO

= �d24�(1) = �d244�̄(1) , (4)

where �(1) is the linear solution of perturbation theory. In this formulation, because ⌧det✓ acts as a source in the
equations of motion, the time dependence of d2 will a↵ect the results. In particular it will be relevant to determine
the relative sizes of the corrections in the di↵erent two point functions involving � and ✓.
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FIG. 1. Diagrams for the tree level, one- and two-loop expressions of the SPT power spectrum.

The case of the one loop bispectrum has already been considered in the literature [18, 19]. In that case the second
order counterterms are needed. This introduces three additional parameters for the spatial structure of ⌧det✓ . One can
write:

⌧det✓

��
NLO

= �d24[�(1) + �(2)] � e14�2(1) � e24(sij(1)s
ij
(1)) � e3@is

ij
(1)@j�(1), (5)

with

sij =

✓
@i@j � 1

3
�(K)
ij 4

◆
�̄. (6)

In principle, d, e1, e2 and e3 could be fixed by measuring both the power spectra and bispectrum. In practice however,
with current simulations there are significant degeneracies among these di↵erent parameters. In practice, making an
ansatz for the ratios, scaling all counterterms by the same amplitude and fitting for this overall amplitude parameter,
seems good enough to explain simulation measurements [18].

In this paper we are interested in performing a two-loop calculation for the power spectrum and thus we would have
to model the stresses up to third order in the fields. Modeling these terms will increase the number of parameters even
further. At the level of the two point function however, some of these parameters will be degenerate. In principle,
one could disentangle all the new parameters comparing the predictions with the four point function measured from
simulations. In practice the necessary signal to noise ratio to do this is probably not available in the current generation
of simulations and a simple ansatz for the ratios of amplitudes of the various terms could be good enough. In any
case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.

A. Perturbative solution and counterterms

In Standard Perturbation Theory (SPT, for a review see[3]) the perturbative solution of the equations of motion
has the following structure,

� = �(1) + �(2) + �(3) + �(4) + �(5) + · · · (7)

where �(n) depends on the initial conditions to the n-th power and we have only written terms relevant for the two loop
calculation of the two point function. When computing the power spectrum, one considers the averages of h�(n)�(m)i.
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case, in this paper we will only compare results against measurements of the two point function and thus we will not
have enough information to distinguish all the parameters. Furthermore, in this type of exercise one runs the risk
of overfitting the power spectra simply because one is introducing too many additional free parameters. In order to
avoid this, one should compare the results of perturbative calculations with simulations at the level of the fields as was
done in [31] for the Lagrangian displacement and in [32] for the density. In this paper we will adopt a simple ansatz
for the size of the various counterterms and only keep one overall free amplitude as a parameter. We will discuss this
in the next sections.
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Describe the dynamics on large scales, after 
integrating out the short scale modes. 



EFT of LSS

• Study regime of small corrections
• Characterize terms
• Calculable vs non-calculable (counter terms)
• How many terms to achieve a desired accuracy?
• What is the relation between results for different statistics

EFT terms

• Write all terms consistent with symmetries: Mass & momentum 
conservation, equivalence principle

• Non-locality in time
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• Historical Science. Where do we Stand? We have fossils.
• Precision of CMB, 50 years of CMB. Lead to impressively tight model.
• Universe started hot, so good laboratory dependence on high energy physics.
DM, Baryons, Neutrinos

• Fossils from before the Hot Big Bang, Connection with GR
• Forced to have a theory for the fossils outside hot big bang. Standard
theory is inflation.

• Inflation, what is it? Can we convince ourselves of the various aspects?
• What we know about these seeds. Planck very tough to improve con-
straints.

• Reflect on open questions in Cosmology. Open questions hard to make
progress in. Qualitative vs Quantitative

• Need LSS, need precision. Substantial progress is needed.
• Advertise EFT of LSS
• Open conceptual problems. Random space time, multiverse etc.
• Opportunities, maybe spheres. Local non-G as a motivation?
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1. Introduction

1.1. Some open questions.
Precision vs qualitative open questions: There are many open questions in cos-
mology, many things that will preoccupy us in the coming decades. Some of this
questions require searching for extremely small e↵ects to be extracted statistically
from large quantities of data. For other questions even crude measurements would
lead to progress.
The focus of this lectures is on developing tools for attacking some of the preci-

sion questions. But first let me give some examples.

1.1.1. Dark Energy. We have very good constraints on dark energy. The BAO is
one of our best tools but it requires precision. The goal for the next decade is to
make sub-percent measurements over a wide range of redshifts.

1.1.2. Neutrinos. We are on the verge of detecting neutrino masses cosmologically.
Again the e↵ects are small and on scales close to the non-linear scales.
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Standard Perturbation Theory

At this scale the 2-loop EFT is good to 1 %

Linear  Theory
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FIG. 1: SPT power spectrum at linear (black; dotted), 1-loop (red; solid), and 2-loop (blue; dashed) order. The squares with
error bars show the mean and error from our N-body simulations. The four panels show ΛCDM (left) and cCDM (right) at
redshifts 1 (top) and 0 (bottom). Each curve has been divided by the no-wiggle power spectrum of [40] to reduce the dynamic
range. We also indicate the domain of validity of 1-loop SPT according to the heuristic prescription of [41] (∆2 < 0.4), and
according to the criterion P (3) < α PL for α = 0.01, 0.03.

in this direction could be important.

Figure 3 shows the predicted power spectrum for the
remainder of the theories that we consider in this work.
With Figures 1 and 2, these figures give an overview of
the agreement between our N-body simulations and the
perturbation theories for ΛCDM and cCDM. Some of
the trends can be seen easily in these figures, and are
generic across cosmologies and redshifts. For instance 1-
loop SPT, which is the same as 1-loop LPT, always over-
predicts P (k) at high k. Lagrangian resummation theory
on the other hand is much too strongly damped beyond
the first wiggle. Large-N theory more or less traces 1-
loop SPT before turning over, while time-RG theory and
RGPT follow the general trends of the N-body data with-
out fitting any particular feature precisely. (Note that
the nearly perfect agreement between RGPT and sim-

ulations for cCDM at z = 1 is likely spurious, as this
level of agreement is not seen for other cosmologies or at
other redshifts.) RPT and closure give nearly identical
tree-level predictions, and very similar 1-loop predictions
for P (k). Closure theory appears to benefit greatly from
going to 2-loop order, whereas for RPT even at z = 1 it
appears that 2-loop does worse than 1-loop.

While we have run many realizations of each cosmol-
ogy to reduce run-to-run variance, one sees in Figures 1,
2 and 3 that the N-body data are still noisy at low k,
which makes it difficult to make quantitative statements
about the performance of the perturbation theories. To
overcome this we define a ‘reference spectrum’ which in-
terpolates the N-body results at high and intermediate
k with the 1-loop SPT calculation at low k. This elimi-
nates the large scatter from the finite number of modes

1-Loop
2-Loop
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from the final field and the propagator after the two-loop terms have been corrected
for. The dashed line shows the e↵ect of a relative error of the linear growth factor of 2 ⇥ 10�4 that both statistics have been
corrected for.
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(14) n+1 -1/2 (C8) 2n+4 1

P

24

(15) n+1 -1/2 (C4) 3n+2 -5/2

(C6) 2n-1 -4

P

33�I

(C1) 2n-1 -4 (C2) 3n+2 -5/2

P

33�II

(16) n+1 -1/2 (13) 2(n+1) -2

TABLE I. Table of the two loop limits, references to the equations where they are discussed, the power of the cuto↵ dependence
⇤x for a power law power spectrum P (k) / k

n with general power law slope n and for n = �3/2. For the single hard limit the
slope gives the power of the hard integral ignoring the remaining finite integral, while for the double hard integrals we consider
both momenta in the hard integrals to be of the same order. The choice n = �3/2 is motivated by the slope of our ⇤CDM
power spectrum at k ⇡ 0.1 hMpc�1.

based on the scale dependence of the two-loop corrections shown in Fig. 5. Again, the value of this asymptotic constant
depends strongly on the PMGRID parameter choice, now leading to a �c2s = 0.3 h�2Mpc2 di↵erence between the
two cases. Note however that they agree at higher wavenumbers. Thus, to the extend that our ansatz is trustworthy,
a model what matches at these scales would prefer the PMGRID = 2Np case at lower wavenumbers.

There is also a slight disagreement between the propagator and power spectrum estimates for the favored PMGRID=
2Np case. The power spectrum method of this case would indicate a c2s = 1.05 h�2Mpc2. In Fig. 13 we show both
the propagator and the power spectrum estimator after the finite two loop terms have been subtracted out. Except
for a �c2s ⇡ 0.1 h�2Mpc2 o↵set both estimators are flat and consistent up to k ⇡ 0.15 hMpc�1, where higher order
terms, for instance the two loop counterterms, start to matter.

Appendix C: Limits of the two loop terms

In the main text, we have concentrated our discussion on the terms that we consider relevant for the leading UV
sensitivity and the corresponding counterterms. Let us, for the sake of completeness, discuss the remaining hard limits
in this appendix. An overview of all the single- and double-hard limits of the two loop calculation is given in Tab. I.
In this table we also give the power of the cuto↵ dependence of the remaining integrals if the initial power spectrum
is of power law form P (k) / kn. We evaluate the cuto↵ dependence for n = �3/2, the slope of our power spectrum
at k = 0.1 hMpc�1. For the single-hard limits we immediately see that the terms that we found to dominate the
shell behaviour have the most shallow decay in the UV, and are thus the most sensitive to the change of the power
spectrum at high wavenumbers. For the double hard limits, the limit of P15 is still growing for n = �3/2 but turns
around at for n = �2 at k ⇡ 0.3, so it will still converge based on the high-k slope of our initial power spectrum. Yet,
it is immediately clear why this integral should be absorbed into the counterterm. The subleading k4P UV-sensitivity
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2 MATIAS ZALDARRIAGA

• Historical Science. Where do we Stand? We have fossils.
• Precision of CMB, 50 years of CMB. Lead to impressively tight model.
• Universe started hot, so good laboratory dependence on high energy physics.
DM, Baryons, Neutrinos

• Fossils from before the Hot Big Bang, Connection with GR
• Forced to have a theory for the fossils outside hot big bang. Standard
theory is inflation.

• Inflation, what is it? Can we convince ourselves of the various aspects?
• What we know about these seeds. Planck very tough to improve con-
straints.

• Reflect on open questions in Cosmology. Open questions hard to make
progress in. Qualitative vs Quantitative

• Need LSS, need precision. Substantial progress is needed.
• Advertise EFT of LSS
• Open conceptual problems. Random space time, multiverse etc.
• Opportunities, maybe spheres. Local non-G as a motivation?
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1. Introduction

1.1. Some open questions.
Precision vs qualitative open questions: There are many open questions in cos-
mology, many things that will preoccupy us in the coming decades. Some of this
questions require searching for extremely small e↵ects to be extracted statistically
from large quantities of data. For other questions even crude measurements would
lead to progress.
The focus of this lectures is on developing tools for attacking some of the preci-

sion questions. But first let me give some examples.

1.1.1. Dark Energy. We have very good constraints on dark energy. The BAO is
one of our best tools but it requires precision. The goal for the next decade is to
make sub-percent measurements over a wide range of redshifts.

1.1.2. Neutrinos. We are on the verge of detecting neutrino masses cosmologically.
Again the e↵ects are small and on scales close to the non-linear scales.
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FIG. 10. Ratio of the data to the various PT models at redshifts z = 0, 0.5, 1, 2 from top left to bottom right. We show the
linear theory calculation (green dot-dashed), the one-loop EFT (red solid) and the two-loop calculation (blue dashed). For the
EFT calculation we show results both before (thin) and after IR-resummation (thick). The ratio is evaluated at the simulation
data points and the two sigma errors on these data points are indicated by the gray band.
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The e↵ects of IR resummation are highlighted in Fig. 9. Performing the IR resummation on the bare one-loop
calculation leads to considerable changes to the power spectrum. Below k ⇡ 0.2 hMpc�1, the not IR-resummed
two-loop calculation performs almost as well as the IR-resummed one loop calculation. The IR-resummation of the
two-loop calculation only matters at the percent level for k > 0.2 hMpc�1.

As we have seen above in Fig. 6, the two-loop calculation is tracking part of the BAO wiggles in the power spectrum
residuals after the one-loop result has been removed. Let us now study its performance at higher wavenumbers and
in the power spectrum itself. In Fig. 10 we show the performance of the IR-resummed and not IR-resummed one-
and two-loop EFT calculations with respect to the non-linear power spectrum extracted from the N -body simulation.
Let us first discuss the broadband performance. At redshift z = 0 the one loop calculation extends the range of
validity5 of linear theory from k ⇡ 0.05 hMpc�1 to k ⇡ 0.1 hMpc�1. This is significantly less, than usually considered
for the range of validity of the EFT at redshift z = 0 and arises from the fact that we have fixed the leading order
counterterm in a way that is compatible with the largest available scales. We then use this parameter to calculate
the two loop counterterm. This term, together with the finite part of the regularized two-loop calculation allows us

5 For the sake of definiteness we will commonly consider 1% deviations from the theory as the threshold for the range of validity. Many
applications will require tighter errorbars on large scales to fix the amplitude. On smaller scales we will anyways su↵er from baryonic
e↵ects and significant covariance, such that less restrictive requirements could be employed.
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Comparison with sims once non-calculable term measured on large 
scales

Improvements in the mildly non-linear regime

2 MATIAS ZALDARRIAGA

• Historical Science. Where do we Stand? We have fossils.
• Precision of CMB, 50 years of CMB. Lead to impressively tight model.
• Universe started hot, so good laboratory dependence on high energy physics.
DM, Baryons, Neutrinos

• Fossils from before the Hot Big Bang, Connection with GR
• Forced to have a theory for the fossils outside hot big bang. Standard
theory is inflation.

• Inflation, what is it? Can we convince ourselves of the various aspects?
• What we know about these seeds. Planck very tough to improve con-
straints.

• Reflect on open questions in Cosmology. Open questions hard to make
progress in. Qualitative vs Quantitative

• Need LSS, need precision. Substantial progress is needed.
• Advertise EFT of LSS
• Open conceptual problems. Random space time, multiverse etc.
• Opportunities, maybe spheres. Local non-G as a motivation?
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1. Introduction

1.1. Some open questions.
Precision vs qualitative open questions: There are many open questions in cos-
mology, many things that will preoccupy us in the coming decades. Some of this
questions require searching for extremely small e↵ects to be extracted statistically
from large quantities of data. For other questions even crude measurements would
lead to progress.
The focus of this lectures is on developing tools for attacking some of the preci-

sion questions. But first let me give some examples.

1.1.1. Dark Energy. We have very good constraints on dark energy. The BAO is
one of our best tools but it requires precision. The goal for the next decade is to
make sub-percent measurements over a wide range of redshifts.

1.1.2. Neutrinos. We are on the verge of detecting neutrino masses cosmologically.
Again the e↵ects are small and on scales close to the non-linear scales.

Amplitude determined at k=0.02, 
shape known theoretically
improvement at k=0.3



Comparison realization by realization

Baldauf,  Schaan & MZ 1505.07098,  1507.02255 

NL �(1) �(1 + 2)

�(1 + 2 + 3) �(T1 + T2 + T3) T �(T1 + T2 + T3)

Figure 7. Non linear transformation of the density field in a patch of 300 h�1Mpc length and 15 h�1Mpc
depth.

well correlated the structure in a Zel’dovich realization is with the non linear structure. Overdensities
are washed out and voids are clearly underdense. Adding higher order displacement fields and transfer
functions on the displacement fields has no strong imprint in this picture beyond a slight sharpening
of the overdensities and filaments. The final density transfer function shown in the last panel clearly
has the strongest effect, most remarkably a sharpening of structures in all environments. But even at
this level there are still obvious differences between the best perturbative approach and the non-linear
field.

5 Stochastic Term

In BSZ we identified an irreducible error at the field level that we associated with the stochastic
term of the EFT. In this Section, we are relating the Lagrangian stochastic term to the Eulerian one.
From now on we will consider displacement fields up to a certain order including all transfer functions
and denote them sPT, in particular we will be mostly concerned with the displacement fields up to
third order, i.e., sPT = a1s

(1)
+ a2s

(2)
+ a3s

(3). The total displacement field is then the sum of the
perturbative and the stochastic part s = sPT + sstoch.

Toy model: origin of the transfer function for the density

Let us consider the case where we expand only the stochastic displacement in Eq. (2.4)
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Figure 6. Left panel: Ratio of the best possible EFT power spectrum to the non-linear power spectrum as a
function of redshift. We indicate the 1% and 10% accuracy lines and mark the crossing of the 1%-threshold
by vertical lines, whose wavenumbers are given in Tab. 1. Right panel: Ratio of the perturbative model with
and without transfer functions and the non-linear power spectrum at z = 0.

that arise from the mapping from Lagrangian to Eulerian space leading to deviations from the k

4

scaling on surprisingly large scales (k ⇡ 0.03 hMpc�1 at z = 0).
In Fig. 6 we show the ratio of error and non-linear power spectrum Perr/PNL for three redshifts

z = 0, 1, 2 for the T �(T1 + T2 + T3) example to quantify up to which wavenumber the perturbative
calculation can be expected to agree with the N -body result. We quote the wavenumbers at which
the stochastic power crosses the 1% and 10% level in Tab. 1. While one should not focus too much
on the specific values, one should definitely note the steepness of the curves in the left panel of Fig. 6.
This means that at a fixed k away from the non-linear scale, the size of the error changes dramatically
as one goes to higher wavenumbers. This is important, since for data analysis applications, such as
trying to see the small effects of primordial non-Gaussianity in the two- and three point functions [2],
precision will probably be more important than reach.

The right panel of Fig. 6 shows Pmodel/PNL�1 and illustrates again that the biggest improvement
in reach comes from the inclusion of the final transfer function, fixing the problems caused by the
mapping. The comparison between T �(1+2) and T �(1+2+3), which are both effectively equivalent to
one-loop EFT calculations (with higher derivative counterterms) shows the difference that the higher
order terms that are only partially included can make. It is amusing to note that T �(1 + 2 + 3) is
actually slightly worse, so the additional work to include s

(3) did not result in an improvement here.
This is perhaps not surprising given how bad s

(3) is on small scales and the fact that the Lagrangian to
Eulerian mapping makes the large scale density depend on these mistakes. Of course with additional
freedom from more counter terms one should be able to absorb these differences. Finally one may
notice that in terms of reach, T �(T1 + T2 + T3) does not even improve by a factor of two. But reach
is perhaps the wrong metric as the error curves are very steep. Fig. 5 shows that away from the
non-linear scale, the error in T �(T1 + T2 + T3) is smaller than the one in T �(1 + 2) by about one
order of magnitude.

A map of the various density fields discussed in this section is shown in Fig. 7. It clearly shows how
well correlated the structure in a Zel’dovich realization is with the non linear structure. Overdensities

z k1% k10%

0 0.25 hMpc�1
0.46 hMpc�1

1 0.48 hMpc�1
0.98 hMpc�1

2 0.85 hMpc�1
1.72 hMpc�1

Table 1. Wavenumbers, where the stochastic term amounts to a 1% or 10% correction to the non-linear
matter power spectrum.

– 12 –

Note: no cosmic variance 
When you consider biased tracers shot noise will 
be larger, so this accuracy for the dark matter is 
more  than sufficient. 
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General lessons from EFT

• The small scale dynamics that is not captured by perturbation theory 
introduces a small number of free parameters that need to be fitted from 
simulation or data
• We understand the structure of these new terms, their dependence with 
scale is fixed. 
• Calculations come with theoretical error bars. 
• We are not strangers to these type of things, bias, higher dimension 
operators in particle physics. 

Additional things to consider

• Biased tracers, redshift space distortions, bispectrum
• Better comparison with simulations to cross the percent level accuracy
• Where is the information on parameters of interest?

• Non-locality in time
• Prevalence of composite operators 

Interesting conceptual differences to standard QFT set up 



Backward modeling/reconstruction

Filter the non-linear density 
and solve for the linear density

�NL = �PT [�lin] + error
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Figure 6. Left panel: Ratio of the best possible EFT power spectrum to the non-linear power spectrum as a
function of redshift. We indicate the 1% and 10% accuracy lines and mark the crossing of the 1%-threshold
by vertical lines, whose wavenumbers are given in Tab. 1. Right panel: Ratio of the perturbative model with
and without transfer functions and the non-linear power spectrum at z = 0.
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the stochastic power crosses the 1% and 10% level in Tab. 1. While one should not focus too much
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as one goes to higher wavenumbers. This is important, since for data analysis applications, such as
trying to see the small effects of primordial non-Gaussianity in the two- and three point functions [2],
precision will probably be more important than reach.

The right panel of Fig. 6 shows Pmodel/PNL�1 and illustrates again that the biggest improvement
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This is perhaps not surprising given how bad s
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freedom from more counter terms one should be able to absorb these differences. Finally one may
notice that in terms of reach, T �(T1 + T2 + T3) does not even improve by a factor of two. But reach
is perhaps the wrong metric as the error curves are very steep. Fig. 5 shows that away from the
non-linear scale, the error in T �(T1 + T2 + T3) is smaller than the one in T �(1 + 2) by about one
order of magnitude.
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